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Abstract

The need for training data can impede the adoption of novel imaging modalities

for deep learning-based medical image analysis. Domain adaptation can mitigate

this problem by exploiting training samples from an existing, densely-annotated

source domain within a novel, sparsely-annotated target domain, by bridging the

differences between the two domains. In this thesis we present methods for adapt-

ing between diffusion-weighed (DW)-MRI data from multiparametric (mp)-MRI

acquisitions and VERDICT (Vascular, Extracellular and Restricted Diffusion for

Cytometry in Tumors) MRI, a richer DW-MRI technique involving an optimized

acquisition protocol for cancer characterization. We also show that the proposed

methods are general and their applicability extends beyond medical imaging.

First, we propose a semi-supervised domain adaptation method for prostate

lesion segmentation on VERDICT MRI. Our approach relies on stochastic gener-

ative modelling to translate across two heterogeneous domains at pixel-space and

exploits the inherent uncertainty in the cross-domain mapping to generate multiple

outputs conditioned on a single input. We further extend this approach to the unsu-

pervised scenario where there is no labeled data for the target domain. We rely on

stochastic generative modelling to translate across the two domains at pixel space

and introduce two loss functions that promote semantic consistency.

Finally we demonstrate that the proposed approaches extend beyond medical

image analysis and focus on unsupervised domain adaptation for semantic segmen-

tation of urban scenes. We show that relying on stochastic generative modelling

allows us to train more accurate target networks and achieve state-of-the-art perfor-

mance on two challenging semantic segmentation benchmarks.
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Chapter 1

Introduction

Deep learning-based medical image analysis has the potential to transform health-

care by achieving high accuracy and efficiency on various diagnostic and treatment

processes [8, 9, 10]. In certain cases, where large, homogeneous datasets with high-

quality annotations are available, deep learning models have been shown to surpass

the performance of clinical experts [11, 12, 13, 14].

However, medical imaging is an evolving field and advanced imaging tech-

niques are constantly developed to replace or supplement existing techniques for

improved diagnosis. At the same time, annotating large-scale datasets for every

newly developed imaging technique is not always a feasible solution due to hu-

man labor and expertise required. Thus, the successful adoption of novel imaging

techniques for learning-based medical image analysis can be hindered by the need

of manual annotation of a large corpus of training data. This can result in inertia,

favoring earlier imaging techniques that come with larger training sets.

A potential solution to this problem is the development of domain adaptation

methods that leverage training samples from an existing, densely-annotated domain

within a novel, sparsely-annotated domain, by bridging the differences between

the two domains. This facilitates training powerful deep-learning models for novel

medical imaging modalities or acquisition protocols, effectively compensating for

the limited amount of training data.

Recent, pixel-level domain adaptation methods establish a transformation be-

tween the two domains that bridges the difference in their statistics while preserving
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the semantics of the translated samples [15, 16, 17, 18, 19, 20]. However, these ap-

proaches rely on the strong assumption that the translation is a deterministic func-

tion mapping a single source to a single target image. We address the challenge

of adapting to a more informative target domain where multiple target samples can

emerge from a single source sample.

We initially focus on prostate lesion characterization on an advanced diffusion-

weighted imaging (DWI) technique called VERDICT (Vascular, Extracellular and

Restricted Diffusion for Cytometry in Tumors) magnetic resonance imaging (MRI).

VERDICT MRI is a non-invasive imaging technique combining an advanced DWI

acquisition protocol and a mathematical model to estimate microstructural feature

of tumour in-vivo [21, 6, 22]. Compared to the naive DWI from multiparametric

(mp)-MRI acquisitions, VERDICT MRI has a richer acquisition protocol to probe

the underlying microstructure and reveal changes in tissue features similar to histol-

ogy. However, the limited availability of labeled training data prevents the training

of robust deep neural networks that could directly exploit the information in the

raw VERDICT MRI. On the other hand, large-scale, clinical mp-MRI datasets ex-

ist. We propose domain adaptation methods that exploit labeled mp-MRI data to

improve the generalization capabilities of prostate lesion characterization on VER-

DICT MRI.

We also demonstrate that the proposed methods are general and applicable

to visual scene understanding. Specifically we focus on semantic segmentation

of urban scenes and exploit synthetically generated datasets (GTA5 [23], SYN-

THIA [24]) that come with rich ground-truth to train models that can perform well

in real images (Cityscapes [25]) with different appearance properties.

1.1 Thesis contributions and outline

The main goal of the thesis is to address data scarcity, i.e, the limited availability or

even complete lack of carefully annotated data required to build accurate predictive

models. Specifically, we focus on the development of domain adaptation methods

that allow leveraging labeled data coming from a related, densely-labeled source
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domain to train models that perform well on data coming from a sparsely-labeled

or unlabeled target domain. We propose a semi-supervised and an unsupervised

domain adaptation method for lesion segmentation on VERDICT MRI and we also

extend our methods to unsupervised domain adaptation for semantic segmentation

of urban scenes.

In Chapter 2 we provide a brief overview of the MRI sequences involved in

prostate cancer characterization. We discuss the different MRI imaging techniques

developed for prostate cancer characterization, their strengths as well as their limi-

tations. We also provide a brief overview of machine learning techniques for auto-

matic assessment of prostate mp-MRI.

In Chapter 3 we perform some preliminary analysis on VERDICT MRI. In

particular we investigate the potential of model-free prostate lesion classification

on the raw VERDICT MRI data using fully convolutional networks (FCNs). We

also examine whether the raw VERDICT MRI allows for better classification of

prostate lesions compared to the raw diffusion-weighed (DW) data and the apparent

diffusion coefficient (ADC) map from the mp-MRI acquisition. Our results indicate

that: i) FCNs trained on VERDICT MRI achieve good performance in differenti-

ating between malignant and benign lesions and ii) FCNs trained and evaluated on

VERDICT MRI perform better than FCNs trained and evaluated on the naive DW

data and the ADC map from mp-MRI acquisitions. This chapter contains material

from [26, 27].

In Chapter 4 we propose a semi-supervised domain adaptation approach for

lesion segmentation. We rely on stochastic generative modelling to translate DW-

MRI from mp-MRI to VERDICT MRI and exploit the inherent uncertainty in the

cross-domain mapping to generate multiple outputs conditioned on a single input.

In addition, we enforce semantic consistency between the real and synthetic images

by exploiting both source-domain and target-domain lesion segmentation supervi-

sion to train target-domain networks operating on the synthetic images. This results

in training networks that can generate diverse outputs while at the same time pre-

serving critical structures. We further accommodate the statistical discrepancies
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between real and synthetic data by introducing residual adapters in the segmenta-

tion network. These capture domain-specific properties and allow the segmentation

network to generalize better across the two domains. When compared to its de-

terministic counter- parts, our approach yields substantial improvements across a

broad range of dataset sizes, increasingly strong baselines, and evaluation metrics.

This chapter contains material from [28, 29].

In Chapter 5, we propose an unsupervised domain adaptation approach for

prostate lesion segmentation. We rely on stochastic generative modelling to trans-

late across the source and the target domain at pixel space and introduce two new

loss functions that promote semantic consistency. Firstly, we introduce a semantic

cycle-consistency loss in the source domain to ensure that the translation preserves

the semantics. Secondly, we introduce a pseudo-labelling loss, where we translate

target data to source, label them using a source-domain network, and use the gener-

ated pseudo-labels to supervise the target-domain network. When compared to sev-

eral unsupervised domain adaptation approaches, our approach yields substantial

improvements, that consistently carry over to the semi-supervised and supervised

learning settings. This chapter contains material from [30, 31].

In Chapter 6, we extend our unsupervised domain adaptation approach for se-

mantic segmentation of urban scenes. We rely on stochastic generative modelling

to capture inherent translation ambiguities. This allows us to (i) train more accurate

target networks by generating multiple outputs conditioned on the same source im-

age, (ii) impute robust pseudo-labels for the target data by averaging the predictions

of a source network on multiple translated versions of a single target image and

(iii) train and ensemble diverse networks in the target domain by modulating the

degree of stochasticity in the translations. We report improvements over strong re-

cent baselines, leading to state-of-the-art unsupervised domain adaptation results on

two challenging semantic segmentation benchmarks. This chapter contains material

from [32].

Finally, in Chapter 7 we present conclusions and suggest future research direc-

tions.
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Chapter 2

Background

In this Chapter we provide a brief overview of the MRI sequences involved in

prostate cancer characterization. In Sec. 2.2, Sec. 2.3 we discuss the different MRI

imaging techniques developed for prostate cancer characterization, their strengths

as well as their limitations. We also provide a brief overview of machine learning

techniques for automatic assessment of prostate mp-MRI.

2.1 Prostate cancer diagnosis
Prostate cancer is the second most common cancer among men worldwide [37].

Early diagnosis and treatment are important to reduce the mortality rate. The stan-

dard procedure to provide a diagnosis of the disease is to carry out a systematic tran-

srectal ultrasound-guided (TRUS) biopsy when elevated levels of prostate specific

antigen (PSA) are reported in the blood. Usually, 10-12 biopsy cores (tissue sam-

ples) are sampled randomly from the prostate [38, 39]. These samples are further

evaluated based on the Gleason grading system [1, 40]. As illustrated in Fig. 2.1,

Gleason grading system defines five histological patterns or grades ranging from 1

(well differentiate glands) to 5 (no glandular differentiation) based on the degree of

differentiation of the cells. Initially, biopsy cores are assigned a grade and then the

grades of the two most prevalent patterns are combined to produce the final Gleason

Score ranging from 2 to 10 with higher score associated with worse prognosis; car-

cinoma of Gleason Score 2-4 is considered as well-differentiated, 5-7 as moderately

differentiated and 8-10 as poorly differentiated.
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Figure 2.1: Histological patterns or grades of prostate adenocarcinoma based on Glea-
son grading system; it defines five patterns ranging from 1 (well differentiate
glands) to 5 (no glandular differentiation) based on the degree of differentiation
of the cells [1].

However, despite the importance of TRUS biopsy for prostate cancer diag-

nosis, it is a suboptimal diagnostic process [41, 42]. The biopsies are sampled

systematically but randomly from the prostate meaning that there is a high chance

of missing significant cancers or detecting insignificant cancers [43]. In particular,

overdiagnosis of insignificant disease occurs in up to 50% of the cases while un-

derdiagnosis occurs in 18% of cases, especially in the anterior apical regions of the

prostate [44]. As a consequence, repeated biopsies with associated patient discom-

fort and additional risks and costs are often necessitated [45].

Transperineal template-guided mapping (TTM) biopsy offers a diagnostic al-

ternative to TRUS biopsy providing better diagnostic accuracy [46, 47]. Transper-

ineal biopsies are obtained by sampling the entire prostate at 5 mm intervals [48].
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Thus, it provides additional information allowing for improved diagnostic accuracy.

Unfortunately though, it comes with additional risks for patients and increased cost

since it requires histological examination of a larger number of cores [49] and gen-

eral anesthesia since the biopsy is taken through the perineum. To address these

limitations, mp-MRI of the prostate is recommended before biopsy [50]. Pre-biopsy

mp-MRI reduces the number of biopsies and overdiagnosis of insignificant disease

and improves the detection of clinically significant prostate cancer [51, 41, 52];

clinically significant cancer is defined as Gleason score of 7 or greater. Clinically

significant prostate cancer has the potential to metastasize while insignificant not

metastasize and mostly results in indolent or slowly growing low-grade tumors.

Therefore accurate discrimination between clinically significant and non-clinically

significant prostate cancer is critical for risk stratification and clinical decision mak-

ing.

2.2 Multiparametric magnetic resonance imaging of

the prostate
MRI is a popular imaging technique providing useful insights about the human body

anatomy and pathology. mp-MRI, which consists of T2 weighed (T2W) imaging,

dynamic contrast enhanced (DCE) imaging, diffusion weighed (DW) imaging and

the corresponding ADC maps, has become a useful tool for prostate cancer detec-

tion.

Radiological interpretation, and reporting of prostate mp-MRI examination re-

lies on the Prostate Imaging Reporting and Data System (PIRADS) [53]. PI-RADS

assesses the likelihood of clinically significant prostate cancer on a 5-point scale for

each lesion. PI-RADS 1 and 2 lesions have been classified as clinically significant

cancer is highly unlikely to be present and clinically significant cancer is unlikely

to be present respectively. PI-RADS 3 lesions has been classified as the presence of

clinically significant cancer is equivocal and clinically significant cancer is unlikely

to be present. Finally, PI-RADS 4 and 5 lesions have been classified as clinically

significant cancer is likely to be present and clinically significant cancer is highly
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likely respectively.

Below we present the basic concepts of MRI and then describe in detail the

different MRI sequences used in prostate imaging.

2.2.1 Basics on magnetic resonance imaging

MRI relies on the interaction between an applied magnetic field and the nucleus

of hydrogen atoms that are abundant in the human body. The hydrogen nucleus

has a positive charge and possesses spin - rotates around its own axis and creates

magnetic field. In normal environment, the spin magnetic moments of the nuclei

are randomly oriented and therefore produce no overall magnetic field. When a

strong external magnetic field B0 is applied, the magnetic moments of the nuclei

align with the direction of this field and start precessing around it with a preces-

sional frequency or Lamor frequency ω0 which is proportional to the strength of the

magnetic field (Fig. 2.2).

ω0 = γB0 (2.1)

The net magnetization vector M0 of spinning nuclei can be decomposed into

two components that are perpendicular to each other: a longitudinal component Mz

and a transversal component Mxy with respect to the main magnetic field B0 such

that M0 = Mz +Mxy. When a radiofrequency (RF) pulse of the same frequency as

the Larmor frequency is applied perpendicular to the magnetic field B0, the nuclei

gain energy and the net magnetization moves away from B0 (longitudinal axis) lying

at an angle to it (towards the transverse axis). As a consequence, the longitudinal

magnetization Mz decreases while the transverse magnetization Mxy increases.

When the RF pulse is removed the nuclei return to equilibrium and the net

magnetization vector realigns with B0; the return to equilibrium is called relaxation.

During relaxation two independent processes occur: the longitudinal and transverse

relaxation. The longitudinal relaxation or T1 recovery is caused by the nuclei releas-

ing the absorbed energy to the surrounding environment allowing the longitudinal

magnetization to recover. The return of magnetization follows an exponential pro-
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(a) (b) (c)

Figure 2.2: Impact of magnetic field B0 on the magnetic moments of the nuclei. a) random
orientation of the spin magnetic moments of the nuclei, b) alignment of the
magnetic moments of the nuclei with the direction of the external magnetic field
B0, c) precession of the magnetic moments of the nuclei around the magnetic
field B0 [2].

cess characterized by a tissue specific time constant T1. Transverse or T2 decay

occurs because of the interaction of neighboring nuclei (spin-to-spin interaction)

causing loss of coherence (dephasing) of the transverse magnetization. The decay

of the transverse magnetization follows also an exponential process characterized

by a tissue specific time constant T2.

2.2.2 Common MRI sequences for prostate imaging

MRI sequences are mainly characterized by two intrinsic parameters: the repetition

time (TR) and the echo time (TE). TR is the time between two successive RF pulses

applied to the same slice and determines the amount of T1 weighing on the contrast

of the image while TE is the time between the excitation and the collection of the

signal and determines the contribution of T2 weighting on the contrast of the image.

As we mentioned previously and also shown in Fig. 2.3, mp-MRI consists of T2W

imaging, DCE imaging and DW imaging [4, 54, 3], which are discussed below in

more detail.

2.2.2.1 T2W Imaging

T2W imaging is the first MRI sequence used to provide insights about prostate

anatomy and pathology [55, 56]. It provides great information regarding the

prostate’s zonal anatomy and it is also used to detect and evaluate abnormalities
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Figure 2.3: Multi-parametric magnetic resonance imaging (mp-MRI) of a patient with sus-
picion of clinically significant prostate cancer. It consists of T2-weighted
(T2W) imaging (A), dynamic contrast enhanced (DCE) imaging (B), diffusion
weighed (DW) imaging (D) and the corresponding ADC maps (C). The lesion
(orange circle) is appeared as a low-signal intensity structure in T2W image
(A), a high-signal intensity structure on the DCE image, a focal “white” area
on the DW image (b1400) (D) and a focal “black” area with a low ADC value
(C) [3].

of the prostate.

Prostate contains three histological zones: the peripheral zone, transition zone

and the central zone. The peripheral zone is the largest part of the prostate com-

prising almost the 70 % of the prostate gland while the central and transition zone

comprise the 25% and 5% of the prostate gland respectively [57]. The peripheral

zone is characterized by higher signal intensity on T2W sequences compared to the

central and the transition zone which are visualized as a low intensity structures.

The central and peripheral zones have similar intensities and can be distinguished

based on their anatomical location [55, 56].

Prostate cancer is visualized as a low intensity mass in the peripheral zone and

it is relatively easy to be detected given that the peripheral zone is characterised
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by high signal intensity. Cancer detection in the transition zone can be challenging

since it is characterized by heterogeneous signal intensity which overlaps with the

signal intensity characteristics of cancer. However, there are some studies indicat-

ing that cancer detection in the transition zone is still possible since it is usually

appeared as homogeneous low intensity structure with ill-defined margins and lack

of capsule [58].

Despite the importance of T2W imaging in providing anatomical and patho-

logical information, it has some important limitations [59, 54, 60, 61]. As we

mentioned earlier, detection of cancer in transition zone is challenging leading to

reduced sensitivity. In addition, benign abnormalities such as prostatitis and benign

prostatic hyperplasia mimic cancer in transition zone leading to low specificity.

2.2.2.2 DCE Imaging

Functional sequences such as DCE imaging is used to improve the diagnostic per-

formance. DCE-MRI provides information about the vascularity of prostate cancer

tissue by assessing the enhancement pattern of tissue over time after the adminis-

tration of a contrast agent material such as gadolinium [62, 63]. The contrast agent

passes from the plasma to the extravascular-extracellular space (EES) with a rate

that depends on the vascular permeability, the vascular surface area and the blood

flow. In tumours, genetic mutations promote the development of new blood vessels

that are highly disorganised, abnormal and are characterized by increased perme-

ability [64] leading to a different enhancement pattern compared to the one observed

in normal tissues.

DCE imaging usually relies on a T1-weighed sequence to measure the en-

hancement pattern of the tissues since the presence of contrast agent in the extracel-

lular space shortens the relaxation time increasing contrast in T1-weighed images.

Qualitative analysis of DCE images involves examination of the enhancement pat-

tern in different locations. Malignant tumours are usually characterized by a signal

having an early, rapid and high enhancement followed by a fast washout. On the

other hand, normal tissue is characterized by slower enhancement for a few min-

utes after the injection. However, qualitative analysis is inherently subjective and



2.2. Multiparametric magnetic resonance imaging of the prostate 35

thus less reliable. Semi-quantitative analysis aim at quantifying the measured signal

by extracting parameters such as the time to peak, maximum slope, peak enhance-

ment. In addition, several quantitative methods relying on pharmacokinetic mod-

elling have been proposed [65, 66]. These methods model the rate of transfer of

the contrast agent between plasma and EES; ktrans corresponds to the rate of trans-

fer from plasma to EES while kep corresponds to the rate of transfer from EES to

plasma. These two constants are characterized by large values in cancer.

Combined DCE imaging and T2W imaging yields to improved diagnostic per-

formance compared to single T2W imaging. Nevertheless, DCE-MRI requires the

administration of a contrast agent and is characterized by low specificity since it has

some limitations in discriminating cancer between prostatitis in the peripheral zone

and highly vascularized benign prostatic hyperplasia in the transition zone.

2.2.2.3 DW Imaging

DW imaging has been demonstrated to be the most important component of mp-

MRI compared to T2W-MRI and DCE-MRI since it allows noninvasive assessment

of the complex tissue microstructure [67, 68, 54, 69]. DW imaging explores the ran-

dom displacement (also called Brownian motion) of water molecules caused by the

thermal energy carried by these molecules [70, 71]. As the displacement of water

molecules is influenced by tissue microstructure, by measuring this displacement

pattern, DW imaging is able to distinguish different microstructural environments.

In general, the movement of water molecules depends on the cellularity of the tis-

sue and the integrity of the cell membrane; higher restriction in the motion of water

molecules is observed in tissues with high cellular density such as tumours.

Typically, a T2-weighed sequence and diffusion-sensitizing gradients are used

for DW imaging. In particular, the intensity of the DW-MR signals becomes sen-

sitive to diffusion by applying a pair of dephasing and rephasing gradients; the

movement of water molecules between the application of the two gradients leads

to imperfect rephasing and corresponding signal loss. In general, the resulting MR

signal is inversely proportional to the movement of the water molecules. Tumours,

which are usually more cellular than normal tissues and do not permit great move-
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Figure 2.4: Diffusion-weighed images acquired using different b-values; 50 s/mm2 (A),
800 s/mm2 (B) and 1500 s/mm2 (C). High b-values suppress prostatic tissue
allowing for better contrast between normal prostate and tumors (arrow) [4]

ment of water molecules, are characterized by high-intensity signals. Thus, the

DW-MR signal can provide information regarding the microstructural organization

of biological tissues.

A critical parameter in DW imaging is the b-value that describes the magnitude

and duration of the diffusion-sensitising gradients as well as the diffusion time. The

sensitivity of the DW-MR signal to the water diffusion can be changed by varying

the b-value; the higher the b-value characterizing the diffusion-sensitizing gradients,

the greater the degree of signal attenuation from water molecules. Images acquired

with zero b-values are equivalent to T2-weighed images.

In prostate, DW imaging is usually performed using b-values ranging between

0 and 1500 s/mm2 [72, 5] (Fig. 2.4). Higher b-values (e.g. b=2000 s/mm2)

are useful in discriminating normal prostatic tissue mimicking cancer in lower b-

values [61]. In general, high b-values suppress prostatic tissue allowing for better

visualization of the tumour. However, images acquired with very high b-values tend

to have decreased signal-to-noise (SNR) and artifacts.

One of the disadvantages of qualitative assessment of DW images is that the

intensity of the signal depends on both water diffusion and T2 relaxation time. Thus,

areas with a very long T2 relaxation time may have high intensity on DW images,

a phenomenon called T2 shine-through [72, 5]. This issue can be addressed by

calculating the apparent diffusion coefficient (ADC) as follows:

ADC =−1
b

ln
S
S0

, (2.2)
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Figure 2.5: Diffusion-weighed (DW) image (A) and the corresponding ADC map (B). The
lesion (arrow) appears as a focal hyperintense mass on the DW image and
as a focal hypointense mass on the apparent diffusion coefficient map (ADC)
map [5].

where S0 and S are the images acquired with b0 (b = 0s/mm2) and b respectively. A

large value in the DW image corresponds to a low value in the ADC map and vice

versa. Thus, lesions appear as focal “black” areas in the ADC maps (Fig. 2.5).

2.2.3 Machine learning for cancer characterization

mp-MRI is very important for non-invasive localization, scoring and staging of ab-

normalities that may correspond to clinically significant prostate cancer . However,

radiological interpretation of mp-MRI often leads to over-diagnosis of low-grade or

non-clinically significant tumours and subsequent over-treatment [41].

Aiming to address this limitation and to speed up the radiological interpreta-

tion of MRI sequences by assisting radiologists, several studies focus on the devel-

opment of machine learning techniques for automatic assessment of prostate mp-

MRI.

In this section we provide an overview of computer-aided diagnosis (CAD)

systems for prostate cancer diagnosis on mp-MRI sequences. CAD systems for

prostate cancer are composed of several subsystems, i.e., prostate segmentation,

image registration, and lesion classification or segmentation [73]. Below, we review

the methods used in each subsystem.
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2.2.3.1 Segmentation

Prostate segmentation is usually performed to limit further analysis on the organ of

interest. In this section we present the different segmentation approaches used in

CAD systems for prostate cancer.

• Atlas-based segmentation. Litjens et al. [74] used an atlas-based segmenta-

tion approach similar to the one proposed in [75] to segment the prostate.

The segmentation is performed in two steps : 1) image registration and 2) at-

las label image fusion. In the image registration step, new subject images are

registered to the atlas images using a non-rigid registration algorithm. The

registered images are applied to the label images. In the label image fusion

step, the labelled images for each subject are combined to one labelled image.

In [76], Litjens et al. extended the atlas-based segmentation approach used

in [74] applying an atlas selection mechanism presented in [77] to improve

label image fusion.

• Model-based segmentation. Viswanath et al. [78] used a novel active shape

model (ASM) called MANTRA (Multi-Attribute, Non-Initializing, Texture

Reconstruction Based Active Shape Model) proposed in [79] to segment the

prostate. Reba et al. [80, 81, 82] performed prostate segmentation using a

level set method. In their work, the speed function controlling the evolution of

the surface is estimated by fusing image intensity and prostate shape features

using a non-negative matrix factorization (NMF) approach.

Despite the success of these methods, they require careful feature engineering to

achieve good performance. The multi-atlas based methods require good features

for identifying correspondences between a new image and each atlas image, while

the deformable model relies on discriminative features, i.e., intensity to segment the

prostate.

2.2.3.2 Registration

Multi-modal image registration is an important component of CAD systems since

it enables the integration of information obtained from different MRI sequences.



2.2. Multiparametric magnetic resonance imaging of the prostate 39

In this section we present some of the image registration methods used in CAD

systems for prostate cancer.

Viswanath et al. [78] performed an affine registration via maximization of mu-

tual information (MI) to correct the misalignment between different MRI modali-

ties. Giannini et al. [83] applied affine registration between T2W and DW images

using bladder contours to focus registration. Kiraly et al. [84] used a 3D non-rigid

registration proposed in [85] to align the different MRI modalities. Registration is

performed by maximizing mutual information using a stochastic analog of gradient

descent. Yang et al. [86] used also non-rigid registration based on mutual informa-

tion to register T2W and ADC images.

2.2.3.3 Prostate lesion detection and classification

In this section we give an overview of the methods used for prostate lesion detection,

classification and segmentation.

• Support Vector Machines (SVM). Artan et al. [87] developed a framework

that combines SVM and conditional random fields (CRFs) for prostate can-

cer segmentation. They trained and evaluated their method on a dataset that

included DCE-MRI in addition to DW-MRI and T2W-MRI and was obtained

from 21 biopsy-confirmed prostate cancer patients. The tumour regions were

contoured by a radiologist using as guidance the histological slides. Litjens

et al. [74] used SVM to classify candidate ROIs obtained after several steps.

Initially, likelihood maps representing the probability of each voxel being ma-

lignant are obtained using a k-nearest neighbour (k-nn) classifier. Then, local

maxima obtained from the likelihood maps are used to segment the candidate

ROIs using a region growing and morphology based method. They trained

and evaluated their method on dataset obtained from 288 patients who under-

went MR-guided biopsy. The dataset included DW-MRI, T2W-MRI, DCE-

MRI. Niaf et al. [88] used SVM to classify malignant and benign lesions.

They trained and evaluated their method on a dataset obtained from 30 pa-

tients who underwent T2W-MRI, DW and DCE-MRI imaging prior to radical

prostatectomy.
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• Linear Discriminant Analysis (LDA). Litjens et al. [76] applied LDA to per-

form voxel-wise classification and obtain likelihood maps indicating the prob-

ability of malignancy in each voxel. Then, they performed candidate selection

and extracted hand crafted statistical features for each candidate. After the ex-

traction of features, candidate classification was performed using LDA. They

evaluated their approach on a large consecutive cohort of 347 patients with

MR-guided biopsy as the reference standard. This set contained 165 patients

with cancer and 182 patients without prostate cancer. All patients underwent

T2W-MRI, DCE-MRI and DW-MRI.

• Probabilistic Models. Niaf et al. [88] used a Naive Bayes (NB) classifier to

classify malignant and benign prostatic lesions. They proposed method was

trained and evaluated on a dataset obtained from 30 patients who underwent

T2W-MRI, DW and DCE-MRI imaging prior to radical prostatectomy. In ad-

dition, Giannini [83] et al. used a NB classifier to estimate voxel malignancy

probability. The dataset used in this study includes included T2W-MRI and

DW imaging data obtained from 10 patients. A radiologist contoured the

lesion of the T2W images using the histopathologic sections as guidance.

• Neural Networks. One major limitation of the aforementioned is that they em-

ploy ad-hoc and handcrafted which are empirically designed and have limited

generalization power to different domains. To address this limitation, several

deep learning methods have been recently proposed. Compared to previous

methods, which use handcrafted features, deep learning methods are able to

effectively learn feature hierarchies from the data. Reda et al. [80] used neural

networks and performed prostate cancer classification using an approach con-

sisting of two main stages. In the first stage they used different auto-encoders

for DW images acquired for different b-values and obtained initial probabil-

ity maps. Then, they used a stacked non-negativity constraint auto-encoder

to estimate the final classification based on the initial probability maps. They

trained and evaluated their approach on DW-MRI data obtained from 53 pa-

tients. Malignant and benign lesions were contoured on the DW-MRI data
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by a radiologist. Kiraly et al. [84] used deep encoder-decoder networks to

discriminate between benign and malignant lesions. They use simple point

locations as ground truth and train the network to output Gaussian kernels

around those points. This approach facilitates simultaneous localization and

classification within a single run. Mehrtash et al. [89] proposed a 3D CNN

to perform image based classification for prostate cancer. In [90], Tsehay et

al. adopted a network architecture from an edge detector proposed in [91]

to generate image probability map and detect lesions after applying thresh-

olding. Wang et al. [92] proposed a framework for joint multimodal regis-

tration and prostate cancer detection. The proposed architecture consists of

two sub-networks; a tissue deformation network that performs multimodal

registration and a dual convolutional neural network that performs image

classification and generates class probability maps. They also performed a

post processing step to detect prostate cancer on the class probability maps.

[84, 89, 90, 91, 92] trained and evaluated the proposed methods on PROSTA-

TEx Challenge dataset [93]. PROSTATEx consists of T2W-MRI, DCE-MRI,

and DW-MRI data obtained from 347 patients. MR-guided biopsy is used

as the reference standard. Cao et al. [94] proposed a CNN for simultaneous

detection and Gleason score prediction of prostate lesions. They trained their

model on a large prostate mp-MRI dataset of 417 patients who underwent

3T mp-MRI exams prior to robotic-assisted laparoscopic prostatectomy. Fi-

nally, Mehta et al. [95] proposed a deep learning framework for automatic

assessment of prostate cancer on mp-MRI, consisting of three sub-modules:

a CNN that performs zone segmentation, a CNN that performs segmentation

of clinically significant cancer, and a report-generator that generates an auto-

matic web-based report. The proposed method was trained on PROSTATEx

dataset [93] and externally validated using the Prostate Imaging Compared to

Transperineal Ultrasound guided biopsy for significant prostate cancer Risk

Evaluation (PICTURE) study dataset [96].

Several deep learning methods have been also proposed for prostate lesion
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segmentation. Hambarde et al. [97] relied on U-Net to achieve segmentation

of prostate gland and prostate lesions. The proposed method was trained and

validated on 1174 and 2071 T2W-MR images of 40 patients and tested on

250 and 415 T2W-MR images of 10 patients for prostate capsule segmen-

tation and prostate lesion segmentation, respectively. A radiologist marked

prostate gland and prostate lesion on the images which served as the ground-

truth. Chen [98] proposed a multiple branch UNet for the segmentation of

prostate lesions on mp-MRI images. They used mp-MRI data from 136 pa-

tient. Each patient underwent T2W-MRI and DW-MRI. A radiologist con-

toured malignant prostate lesions based on the radiology report. Liu [99] et

al. proposed a multi-scale segmentation network with a cascading pyramid

convolution module and a double-input channel attention module for prostate

lesion segmentation. They used a dataset obtained from 171 patients to train

the proposed method and a dataset obtained 17 patients to test the model.

The two datasets were acquired from different centers but both include ADC,

T2W-MRI, and DW-MRI. A radiologist annotated the images according to

the pathology report. Duran et al. [100] propose an attention-based CNN for

joint multi-class segmentation of prostate and prostate lesions. The dataset

used for training and evaluation was obtained from 219 patients. All pa-

tients underwent radical prostatectomy, meaning that the majority of patients

had clinically significant cancer and a high number of lesions in the dataset.

A radiologist outlined the prostate lesions based on T2W-MRI, ADC maps

and DCE-MRI. The prostatectomy specimens were analyzed and used as

groundtruth for the outlined lesions.

2.3 Advanced imaging of the prostate

As we mentioned in Sec. 2.2.3, several studies focus on the development of ma-

chine learning to address some of the limitations of mp-MRI. Another domi-

nant research direction for improving non-invasive prostate cancer characteriza-

tion is the development of advanced imaging techniques aiming at improving the
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Figure 2.6: VERDICT MRI. It combines a mathematical model and an optimized
diffusion-weighted (DW) acquisition protocol to access microstructural fea-
tures such as cell size, density, and vascular volume fraction, all of which
change in cancer. The intracellular volume fraction (fIC, fVASC) is signifi-
cant higher for malignant tumours (arrow) than for benign or normal prostate
tissue since increased cellularity is a common characteristic in cancer. The
extracellular-extravascular volume fraction fEES is significantly lower in tu-
mours compared to benign or normal tissue while there is not significant change
in the estimate of the cell radius (R).

quality of the acquired data and providing information similar to histology. Re-

cent advanced imaging techniques include VERDICT MRI, luminal water imaging

(LWI) [101, 102, 103], hybrid multi-dimensional MRI (HM-MRI) [104, 105, 103]

and restriction spectrum imaging (RSI) [106, 107, 103]. In this thesis we focus

on VERDICT MRI and we describe it in more detail in section Sec. 2.3.1 and

in Sec. 2.3.2 we give a brief overview of LWI and HM-MRI.

2.3.1 VERDICT MRI

VERDICT MRI is a non-invasive microstructural imaging technique for cancer

characterization [21, 6]. It combines a mathematical model and an optimized DW

acquisition protocol to access microstructural features such as cell size, density, and

vascular volume fraction, all of which change in cancer (Fig. 2.6).

DW-MRI is an integral component of mp-MRI since it provides information

about cancer aggressiveness and improves specificity [67, 68]. However, mp-MRI

studies use DW-MRI in its simplest form by deriving the ADC map. This simplified

model of water diffusion lacks biological specificity as it fails to discriminate the

variety of histological changes that occur in cancer [69]. VERDICT MRI improves

on ADC maps by modelling directly the underlying microstructure.
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Figure 2.7: Schematic representation of the prostate tissue and the corresponding compo-
nents of the VERDICT model. The color indicates the assignment of the tissue
compartments to the model components [6].

VERDICT model is a three compartment model characterizing water diffu-

sion in three primary compartments: 1) vascular, 2) extracellular-extravascular,

and 3) intracellular space allowing the estimation of intracellular, extracellular-

extravascular and vascular volume fractions, as well as cell radius. Fig. 2.7 shows a

schematic representation of the VERDICT model for the prostate tissue. The intra-

cellular compartment (IC) has three parameters: intracellular volume fraction (fIC),

diffusivity (dIC) and cell radius (R). The extracellular-extravascular space (EES)

compartment has EES volume fraction (fEES) and EES diffusivity (dEES) as param-

eters. The vascular compartment has vascular volume fraction (fVASC) and pseudo-

diffusivity (P) as parameters. The estimated parameters provide information about

the cellular and vascular structure of the tissue which change with disease.

The intracellular volume fraction is significant higher for malignant tumours

than for benign or normal prostate tissue since increased cellularity is a common

characteristic of malignant tumours. The extracellular-extravascular volume frac-

tion is significantly lower in tumours compared to benign or normal tissue while

there is not significant change in the estimate of the cell radius.

An initial pre-clinical study demonstrated that the application of VERDICT in

colorectal tumour xenographs can reveal differences in the microstructural features

of different tissue types [21]. An subsequent in-vivo study in patients with prostate

cancer demonstrated the potential of VERDICT in discriminating cancer and benign

tissue [6]. In addition, a recent study indicated that the intracellular volume fraction
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(FIC) map provides better differentiation of Gleason 4 cancer from benign and/or

Gleason 3+3 compared to the ADC map [22].

2.3.2 Other advanced prostate imaging techniques

Other advanced imaging techniques include LWI [101, 102, 103] and HM-

MRI [104, 105, 103] and are described briefly below.

LWI [101, 102, 103] is an MRI method that employs multicomponent mod-

elling of T2 mapping data. It has been developed based on the fact that the com-

position and lumen percentage of the prostatic tissue changes significantly with the

presence of cancer and the Gleason grade on cancer. It introduces a new parameter

called luminal water fraction (LWF), which is proportional to the fractional volume

of luminal space in prostatic tissue. LWF can reveals important information for di-

agnostic purposes because of the difference in composition and lumen percentage

between normal and cancerous tissues.

HM-MRI [104, 105, 103] is an MRI method that relies on the fact that frac-

tional volumes of the prostate gland components stroma, epithelium, and lumen cor-

relate strongly with cancer presence, Gleason grade. It uses two-dimensional MRI

sampling to measure the change in ADC and T2 on TE and b-value, respectively.

Thus, HM-MRI could provide quantitative estimates of tissue composition by ex-

ploiting the coupled T2 and ADC values associated with each tissue component and

use these as a source of information about the underlying tissue microstructure.



Chapter 3

Model-free prostate cancer

characterization on VERDICT-MRI

using deep learning

In this chapter we investigate the potential of model-free prostate lesion charac-

terization on VERDICT MRI and examine whether raw VERDICT MRI allow for

better classification of prostate lesions compared to the raw DW data and the ADC

map from the mp-MRI acquisition. This chapter contains material from [26, 27],

which were published at MLMI@MICCAI 2018 and ISMRM 2019.

3.1 Introduction
As we discussed in Sec. 2.3.1, VERDICT MRI is a microstructural imaging tech-

nique aiming to decode the information contained in DW images acquired with

different diffusion weightings (b-values) and to derive microstructural features that

allow prostate cancer characterization in-vivo [21, 6]. Currently, the standard proce-

dure to perform prostate cancer characterization using advanced diffusion models,

such as VERDICT MRI, is to fit biophysical models to the DW-MR signal to quan-

tify and map microstructural tissue parameters that change with cancer. Biophys-

ical models assume a simplified tissue structure and rely on numerical estimation

of the DW-MR signal in such an environment. However, this approach has some

limitations [108]: i) the models have to be simple enough for the fitting to work
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stably, ii) the models are handcrafted meaning that they may discard information in

a sub-optimal way. Thus biophysical model, may not allow to fully exploit the rich

information encoded in the DW-MR signal.

Several studies aim to address these limitations by relying on data-driven ap-

proaches and in particular neural networks. Golkov et al. trained a simple multi-

layer perceptron to discriminate between several tissue types in the brain by using

directly the DW images as inputs rather that using scalar tissue parameters obtained

from model fitting [109]. This allowed them to fully exploit the unique information

provided by the DW-MR signal without potential information loss due to model

simplicity. The results of their work show that model-free diffusion MRI can be

used to estimate arbitrary tissue properties in various settings where ground truth

training datasets are available. In a follow-up work [110], they demonstrated that

abnormality detection is also feasible without the requirement for labels. Their work

uses raw DW images from a healthy population as reference and any deviation in the

patient dataset from the healthy reference dataset can be detected using novelty de-

tection methods. Despite the fact it eliminates the requirement for labeled data, this

approach does not provide information regarding the underlying pathology causing

changes to DW-MR signal.

In addition, several recent studies rely on machine learning, and in particular

deep learning, to estimate microstructural tissue parameters from the DW-MR sig-

nal [111, 112, 113, 114, 115]. The results indicate that deep learning can be used

to avoid instabilities accompanying model fitting and reduce scan time since only a

subset of the DW images contain relevant information.

In this chapter, we first aim to investigate the potential of model-free prostate

lesion characterization using the raw DW-MR data from VERDICT MRI acquisi-

tions. We rely on fully convolutional networks (FCNs) trained end-to-end using as

input the raw DW images. Second, we examine whether raw VERDICT MRI al-

lows for better classification of prostate lesions compared to the raw DW data and

the ADC map from the mp-MRI acquisition.
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3.2 Datasets

VERDICT MRI data: In this study we use VERDICT MRI data from 103 patients

(median age, 62.2 years; range, 49.5–82.0 years)acquired as part of the INNOVATE

clinical trial [116]. DW images (Fig. 3.1) were acquired with pulsed-gradient spin-

echo sequence (PGSE) using an optimised imaging protocol for VERDICT prostate

characterization with 5 b-values (90, 500, 1500, 2000, 3000 s/mm2) in 3 orthogonal

directions, on a 3T scanner (Achieva, Philips Healthcare, NL) [117]. Also, images

with b = 0s/mm2 were acquired before each b-value acquisition. Compared to the

naive DW-MRI from mp-MRI acquisitions, VERDICT-MRI has a richer acquisition

protocol to probe the underlying microstructure and reveal changes in tissue fea-

tures similar to histology. The DW-MRI sequence was acquired with a voxel size of

1.25×1.25×5mm3, 5mm slice thickness, 14 slices, a field of view of 220×220mm2

and the images were reconstructed to a 176×176 matrix size. The data was regis-

tered using rigid registration [118]. A dedicated radiologist highly experienced in

prostate mp-MRI reporting (reporting more than 1000 scans per year) contoured

malignant and benign lesions on the registered VERDICT MRI using mp-MRI for

guidance. Lesions in Prostate Imaging Reporting and Data System (PI-RADS) cate-

gory 3 are considered benign while lesions in PI-RADS category 4, 5 are considered

malignant. In total, there are 134 lesions; 61 benign and 73 malignant. We note here

that only index lesions (the largest lesion with the highest score) were annotated.

Standard DW data from mp-MRI: The DW-MRI data from the mp-MRI acqui-

sition was acquired with diffusion-weighted echo-planar imaging sequence with 4

b-values (0, 150, 500, 1000, 2000 s/mm2). The DW data was acquired with the fol-

lowing imaging parameters: a repetition time msec/echo time msec, 2753/80; field

of view, 220×220 mm; section thickness, 5 mm; no intersection gap; acquisition

matrix, 168×169mm. The ADC map was calculated by the scanner software. A

dedicated radiologist highly experienced in prostate mp-MRI reporting (reporting

more than 1000 scans per year) contoured malignant and benign lesions on DW

images. Lesions in PI-RADS category 3 are considered benign while lesions in PI-

RADS category 4, 5 are considered malignant. We note here that only index lesions
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were annotated.

(a) b = 90s/mm2 (b) b = 500s/mm2 (c) b = 1500s/mm2

(d) b = 2000s/mm2 (e) b = 3000s/mm2

Figure 3.1: VERDICT MRI data acquired with 5 b-values in 3 orthogonal directions. Ma-
lignant regions (noted in blue) are seen as a focus of high signal intensity on
DW-MRI of b = 2000,3000s/mm2 and as a focus of low signal intensity on
the corresponding b = 90s/mm2 image.

3.3 Methods
We consider a dataset with paired image-label data: D = {(xi,yi)}, i ∈ [1,D], where

xi ∈ RH×W×20 is a 20-channel DW image and yi ∈ LH×W the corresponding label-

ing. We consider two classes (malignant, benign/normal) and consider a label set

L = {0,1} where 0 corresponds to benign/normal/background and 1 to malignant.

We note here that only index lesions are annotated meaning that there might be areas

that are mistakenly considered as normal. Nevertheless, evaluating the performance

of a model in discriminating malignant lesions can still provide meaningful infor-

mation. Our task is to train a model F that performs pixel-wise classification. We

train the model using pixel-wise cross-entropy loss resulting in a training objective

of the following form:

LCE = ∑
(xi,yi)∈D

∑
w,h

yi log(p(w,h,1)i )+(1− yi) log(p(w,h,0)i ), (3.1)
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where pi = F(xi) the softmax output of model F given the input image xi.

We consider two different models F parameterized by FCNs trained end-to-

end. FCNs have shown great success on pixel-wise classification tasks on both nat-

ural and medical images [119, 120, 121, 122]. In this study we consider U-Net [120]

and ResNet [123] with an effective decoder module proposed in [122]; both archi-

tectures use an encoder-decoder structure. We modify both architectures and make

several design choices to avoid overfitting that may arise due to the small dataset

we have in our disposal. Specifically, we opt for shallower networks composed of a

smaller number of layers and channels compared to the original architectures. The

original models have a large number of trainable parameters that are sufficient to

overfit a small training set. Reducing the number on parameters, we reduce the

complexity of the model and thus avoid overfitting [124].

Below we provide a detailed description of the modified architectures we used

in our experiments.

Network Architectures.

MRI-U-Net: The first model (MRI-U-Net) shown in Fig. 3.2 is based on the U-Net

architecture proposed in [120]. U-Net consists of two main modules; an encoder

module and a symmetric decoder module. MRI-U-Net has fewer convolutional lay-

ers to avoid overfitting. The encoder module is composed by 3 encoder blocks

(EncBlockk, k = 1, . . .3). Each encoder block consists of a convolution layer fol-

lowed by batch normalization (BN) [125], a rectified-linear unit (ReLU) [126] and

a 2x2 max pooling operation with stride 2. Each encoder block doubles the number

of feature maps by applying 3x3 convolutions and halves the spatial dimension of

the feature maps by applying maxpooling. The central module consists of a con-

volution layer followed by BN and a ReLU. The decoder module is composed by

3 decoder blocks (EncBlockk, k = 1, . . .3). Each decoder block consists of a 2x2

transposed convolution with stride 2 to upsample the low resolution feature maps

and a convolutional layer followed by BN and a ReLU. Concatenation of the up-

sampled feature maps with the corresponding encoder feature maps is performed

before the convolutions. Each convolutional layer performs 2D convolutions of the
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(a) Visual representation of MRI-U-Net architecture.
Block layer kernel size # filters stride BN ReLU dropout

EncBlock1
conv1 3x3 64 1 yes yes no
pool1 2x2 n/a 2 no no no

EncBlock2
conv2 3x3 128 1 yes yes no
pool2 2x2 n/a 2 no no no

EncBlock3
conv3 3x3 256 1 yes yes no
pool3 2x2 n/a 2 no no no

CentBlock conv4 3x3 256 1 yes yes yes

DecBlock1
transpConv1 2x2 256 2 no no no

conv5 3x3 256 1 yes yes yes

DecBlock2
transpConv2 2x2 128 2 no no no

conv6 3x3 128 1 yes yes no

DecBlock3
convTransp3 2x2 64 2 no no no

conv7 3x3 64 1 yes yes no
OutBlock conv8 1x1 2 1 no no no

(b) Detailed description of each layer in MRI-U-Net.

Figure 3.2: MRI-UNet. MRI-U-Net consists of two main modules; an encoder module
and a symmetric decoder module. The encoder module is composed by 3 en-
coder blocks. Each encoder block consists of a convolution layer followed
by a 2x2 maxpooling operation with stride 2. The central module consists of
a convolution layer. The decoder module is composed by 3 decoder blocks.
Each decoder block consists of a 2x2 transposed convolution with stride 2 to
upsample the low resolution feature maps and a convolutional layer to refine
the feature maps. Concatenation of the upsampled feature maps with the corre-
sponding encoder feature maps is performed before the convolutions. The last
block (OutBlock) consists of a convolutional layer that performs 1x1 convolu-
tions to map the input to the desired number of classes. To prevent overfitting,
we apply dropout to layers conv4, conv5.
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input with 3x3 kernels to halve the number of features maps. The last block (Out-

Block) consists of a convolutional layer that performs 1x1 convolutions to map the

input to the desired number of classes. As in previous studies [127, 128], we apply

dropout [129] on layers conv4, conv5 that have a large number of parameters to

prevent feature coadaptation and overfitting.

MRI-ResNet: The second network (MRI-ResNet) has also an encoder-decoder

structure as shown in Fig. 3.3. The encoder module is a modified version of ResNet-

18 proposed in [123]. We remove the maxpooling layer in the beginning of the net-

work and the global average pooling layer at the end of the network. We also replace

the last fully-connected layer with a convolutional layer and decrease the number of

convolutional layers. The encoder module is composed by an input block (InBlock)

and 3 encoder blocks (EncBlockk, k = 1, . . .3). The input block consists of a 7x7

convolution allowing for a larger receptive field. Each encoder block consists of 2

convolutional layers. The first convolutional layer of each encoder block halves the

spatial dimension of the feature maps by applying 3x3 convolutions with stride 2.

Shortcut connections, which has been proposed to address the degradation problem

in deep convolutional neural networks [123], are added to each pair of convolutional

layers in each encoder block. Specifically, given x, the input of an encoder block,

the output y is given by y = F(x)+G(x), where F represents multiple convolu-

tional layers (3x3 convolutions) and G represents the projection shortcut used to

match dimensions (done by 1x1 convolutions with stride 2). All the convolutional

layers are followed by BN and a ReLU apart from cases where residual connections

are considered; in those cases ReLU is applied after the addition. As in previous

studies [127, 128], we apply dropout [129] on layers conv6, conv7 that have a large

number of parameters to prevent feature coadaptation and overfitting. The decoder

module is similar to the one proposed in [122] and has 3 decoder blocks (DecBlockk,

k = 1, . . .3). Each decoder block consists of a bilinear upsampling and two convolu-

tional layers followed by BN and a ReLU. Bilinear upsampling upsamples the low

resolution feature maps by a factor of 2. The upsampled features maps are then con-

catenated with the corresponding encoder feature maps. Both convolutional layers
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(a) Visual representation of MRI-U-Net architecture.
Block layer kernel size # filters stride BN ReLU dropout upsampling

factor
InBlock conv1 7x7 64 1 yes yes no -

EncBlock1
conv2 3x3 64 2 yes yes no -
conv3 3x3 64 1 yes no no -

conv_proj1 1x1 64 2 yes no no -

EncBlock2
conv4 3x3 128 2 yes yes no -
conv5 3x3 128 1 yes no no -

conv_proj2 1x1 128 2 yes no no -

EncBlock3
conv6 3x3 128 2 yes yes yes -
conv7 3x3 128 1 yes no yes -

conv_proj3 1x1 128 2 yes no no -

DecBlock1
bilUp - - - - - - 2
conv8 1x1 128 1 yes yes no -
conv9 3x3 64 1 yes yes no -

DecBlock2
bilUp - - - - - - 2

conv10 1x1 64 1 yes yes no -
conv11 3x3 64 1 yes yes no -

DecBlock3
bilUp - - - - - - 2

conv12 1x1 64 1 yes yes no -
conv13 3x3 64 1 yes yes no -

InBlock conv14 7x7 64 1 yes yes no -

(b) Detailed description of each layer in MRI-U-Net.

Figure 3.3: MRI-UNet.The encoder module is composed by an input block (InBlock) and
3 encoder blocks. The input block consists of a 7x7 convolution allowing for
a larger receptive field. Each encoder block consists of 2 convolutional layers.
Shortcut connections are added to each pair of convolutional layers in each en-
coder block; 1x1 convolutions with stride 2 are used to match dimensions. The
decoder module has 3 decoder blocks. Each decoder block consists of a bilin-
ear upsapmling and two convolutional layers. The upsampled features maps are
concatenated with the corresponding encoder feature maps. The convolutional
layers halve and refine the number of features maps by performing 1x1 and 3x3
convolutions respectively. We apply dropout to layers conv6, conv7 to prevent
overfitting.
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halve the number of features maps by performing 1x1 and 3x3 convolutions respec-

tively. We first apply 1x1 convolutions to reduce the number of parameters of our

model since the concatenated features usually contain a large number of channels.

Training settings.

We implement both networks using Pytorch [130]. We employ a 10-fold cross

validation approach to train and test the networks. We repeat each 10-fold cross

validation 5 times. We train the networks for 200 epochs and select the parameters

(i.e., number of layers, batch size, learning rate, weight decay, dropout rate) that

has the smallest loss on a validation set (20% of the training set). We use stochastic

gradient descent (SGD) with a mini-batch size of 32, a constant learning rate of

1e-5, a momentum of 0.9 and a weight decay of 1e-3. We employ dropout as a

regularization strategy with dropout rate 0.5.

Evaluation metrics.

We evaluate the binary pixel-wise classification using average sensitivity, speci-

ficity, area under the receiver operating characteristic (ROC) curve (AUC) and pre-

cision. Sensitivity, specificity and precision are defined as

• sensitivity = TP
P , where TP is the number of true positive pixels and P is the

number of positive pixels.

• specificity = TN
N , where TN is the number of true negative pixels and N is the

number of negative pixels.

• precision = TP
FP+TP , where FP is the number of false positive pixels.

3.4 Results

3.4.1 Model-free prostate lesion characterization

We perform three different experiments and report the results. In each experiment

we train the models considering different parts of the image during training. In the

1st experiment we train the models using predefined malignant and benign/normal

ROIs. This allows us to avoid using areas of the image that belong to malignant

class and have not been annotated; as we mentioned earlier only index lesions were
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Networks Regions
AUC sensitivity specificity precision

Slice-level Subject-level Slice-level Subject-level Slice-level Subject-level Slice-level Subject-level

MRI-UNet
malignant vs benign ROIs 85.7 (±9.2) 83.4(±10.1) 75.7(±9.1) 73.2(±9.9) 75.4(±6.1) 73.2(±6.9) 86.2(±10.3) 83.1(11.8)

malignant vs all 74.1 (±10.5) 72.9(±10.2) 75.6(±10.4) 74.8(±11.0) 47.6(±7.4) 42.1(±8.0) 2.0(±11.1) 1.5(12.2)

MRI-ResNet
malignant vs benign ROIs 86.7 (±10.8) 84.3(±11.9) 71.8(±9.6) 69.7(±10.1) 83.3(±6.6) 81.9(±7.1) 90.0(±11.2) 88.4(12.4)

malignant vs all 71.9 (±11.1) 69.8(±12.0) 71.6(±9.9) 70.8(±10.8) 57.1(±6.9) 55.5(±7.8) 4.7(±11.9) 2.9(12.7)

Table 3.1: 1st experiment: Average AUC, sensitivity, specificity, precision of MRI-UNet
and MRI-ResNet when evaluation is performed on i) malignant and benign re-
gions of interest (ROIs) (malignant vs benign ROIs) and ii) the entire image
(malignant vs all). Using MRI-ResNet results in slightly improved performance
(AUC of 86.7%) when we compare the performance on predefined ROIs. When
we evaluate the performance on the entire image, we observe that it drops signif-
icantly especially in terms of specificity and precision. This is normal since the
models have been trained only on a subset of the entire image and therefore they
encounter unseen samples at inference time. In addition, we observe that the two
networks behave differently for different metrics and evaluation protocols.

Figure 3.4: 1st experiment: Receiver operating characteristic (ROC) curves of MRI-U-Net
and MRI-ResNet when evaluation is performed on i) predefined malignant and
benign regions of interest (ROIs) and ii) the entire image (EntIm).Using MRI-
ResNet results in slightly improved performance (AUC of 86.7%) when we
compare the performance on predefined ROIs.
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annotated. In the 2nd experiment we randomly sample and use normal/background

ROIs during training; this allows us increase the number of negative labelled ROIs

and to improve performance. In the 3rd experiment we train the models using the

entire image as input.

1st experiment. In the first experiment we train the networks on predefined malig-

nant and benign/normal ROIs and ignore the rest of the pixels. The main objective

of this experiment is to evaluate the ability of the models to discriminate between

malignant and benign lesions. Table 3.1 shows the performance of the two net-

works on i) predefined malignant and benign ROIs (malignant vs benign ROIs) and

ii) the entire image (malignant vs all) at slice-level and subject-level. We observe

that slice-level and subject-level results are similar - the subject-level performance

is slightly lower. In the second case regions which are not labelled as malignant are

considered as benign/normal. Fig. 3.4 shows the receiver operating characteristic

(ROC) curves of MRI-U-Net and MRI-ResNet when evaluation is performed on i)

predefined malignant and benign ROIs and ii) the entire image. Using MRI-ResNet

results in slightly improved performance (AUC of 86.7%) when we compare the

performance on predefined ROIs. When we evaluate the performance of the two

networks in the entire image we observe that it drops significantly especially in

terms of specificity and precision. This is normal since the models have been trained

only on a subset of the entire image and therefore they encounter unseen samples

at inference time. Finally, we observe that the two networks behave differently

for different metrics and evaluation protocols. For instance, MRI-ResNet results in

slightly improved performance (AUC of 86.7%) when we compare the performance

on predefined ROIs while MRI-U-Net yield to better performance when we evalu-

ate the models on the entire image. In addition, MRI-U-Net has better sensitivity

while MRI-ResNet has better specificity and precision.

2nd experiment. In the previous experiment we consider only malignant and be-

nign ROIs during training. However, at inference time we need to evaluate the

performance on the entire image. This means that the network is asked to clas-

sify normal prostate tissue and background voxels that it has not seen during train-



3.4. Results 57

Networks Regions
AUC sensitivity specificity precision

Slice-level Subject-level Slice-level Subject-level Slice-level Subject-level Slice-level Subject-level

MRI-UNet
malignant vs benign ROIs 89.0 (±8.9) 85.3(±9.2) 82.9(±8.8) 79.9(±9.1) 77.9(±5.4) 75.1(±6.2) 88.8(±9.5) 85.4(10.3)

malignant vs all 94.2 (±9.8) 92.1(±9.9) 82.7(±8.9) 80.2(±10.2) 91.2(±6.2) 89.8(±6.9) 13.4(±10.3) 10.2(11.8)

MRI-ResNet
malignant vs benign ROIs 87.6 (±10.3) 84.8(±10.8) 86.4(±8.2) 83.5(±9.8) 72.6(±5.9) 70.4(±7.0) 86.7(±10.0) 84.8 (10.1)

malignant vs all 94.0 (±10.9) 91.4(±11.4) 86.4(±9.4) 84.3(±10.1) 88.8(±6.0) 85.2(±7.4) 11.2(±10.9) 5.8(10.3)

Table 3.2: 2nd experiment: Average AUC, sensitivity, specificity, precision of MRI-
UNet and MRI-ResNet when evaluation is performed on i) malignant and be-
nign/normal/background ROIs (malignant vs benign/normal/background ROIs)
and ii) the entire image (malignant vs all) when we use additional negative la-
belled ROIs. Using MRI-U-Net results in slightly improved performance(AUC
of 89.7%) when we compare the performance on predefined ROIs. Using addi-
tional negative labelled ROIs improves performance when classification is per-
formed on the entire image. However, precision remains still low when we eval-
uate on the entire image. Regarding the performance of the two models we
observe that MRI-U-Net performs better in terms of specificity and precision
while MRI-ResNet performs better in terms of sensitivity.

Figure 3.5: 2nd experiment. Receiver operating characteristic (ROC) curves of MRI-UNet
and MRI-ResNet when evaluation is performed on i) predefined malignant and
benign/normal/background ROIs and ii) the entire image (EntIm). Using MRI-
U-Net results in slightly improved performance (AUC of 89.0%) when we com-
pare the performance on predefined ROIs. We observe no difference when we
evaluate the performance on the entire image.

ing. To address this issue, we increase the number of negative labelled ROIs by

randomly selecting and using normal/background ROIs during training. As in the

previous experiment we consider two classes; malignant (positive class) and be-

nign/normal/background (negative class). Table 3.2 shows the classification perfor-

mance of the networks on i) predefined malignant and benign/normal/background
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ROIs (malignant vs benign/normal/background ROIs) and ii) the entire image

(malignant vs all) at slice-level and subject-level. We observe that slice-level

and subject-level results are similar - the subject-level performance is slightly

lower. Fig. 3.5 shows the ROC curves of MRI-UNet and MRI-ResNet when evalu-

ation is performed on i) predefined malignant and benign/normal/background ROIs

and ii) the entire image. Using additional negative labelled ROIs improves per-

formance when classification is performed on the predefined regions or the entire

image. However, precision remains still low when we evaluate on the entire image

meaning that a large proportion of pixels in negative class are classified as posi-

tive. Regarding the performance of the two models we observe that MRI-U-Net

performs better in terms of specificity and precision while MRI-ResNet performs

better in terms of sensitivity.

Networks Regions AUC sensitivity specificity precision
MRI-U-Net malignant vs all 85.0% 52.4% 97.8% 58.2%
MRI-ResNet malignant vs all 89.2% 55.1% 97.2% 55.4%

Table 3.3: 3rd experiment: Average AUC, sensitivity, specificity, precision of MRI-UNet
and MRI-ResNet when training and evaluation is performed only on the entire
image. We observe that MRI-U-Net behaves better in terms of precision while
MRI-ResNet behaves better in terms of AUC and sensitivity.

3rd experiment. Finally, we train the two networks using the entire image in-

stead of using predefined ROIs. The main objective of this experiment is to eval-

uate the ability of the models to discriminate between malignant and benign le-

sions/background. Accurate automatic classification of malignant lesions could as-

sist and accelerate the accurate radiological interpretation of VERDICT-MRI data.

As in the previous experiments, we consider two different classes; malignant (posi-

tive class) and benign/normal/background (negative class). The only difference with

the previous experiment (2nd experiment) is that during training we consider all the

voxel corresponding to normal prostate tissue and background instead of random

sampling ROIs. Table 3.3 shows the classification performance of the networks

when they are trained and evaluated on the entire image. We observe that MRI-U-

Net behaves better in terms of precision while MRI-ResNet behaves better in terms
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Figure 3.6: Receiver operating characteristic (ROC) curves of MRI-UNet when training
and evaluation is performed on the raw VERDICT MRI data, the ADC map
and the raw DW-MRI data from the mp-MRI acquisition. MRI-U-Net achieves
better performance (area under the curve (AUC) of 92.40%) on VERDICT MRI
data. When the ADC map and the raw DW-MRI data from the mp-MRI acqui-
sition are used, it achieves an AUC of 86.07% and 86.94% respectively.

of AUC and sensitivity. In addition, compared to the previous experiment (2nd ex-

periment), we observe that sensitivity drops significantly while precision increases.

The drop in sensitivity might be related to the fact that only the index lesions are

annotated meaning that may exist malignant ROIs that are mistakenly considered as

normal/background during training and evaluation.

3.4.2 VERDICT MRI vs standard DW-MRI imaging from mp-

MRI

In this section we examine whether raw VERDICT MRI allows for better classifica-

tion of prostate lesions compared to the naive DW imaging and the ADC map from

the mp-MRI acquisition. We note here that we use only a subset of the patients, in

particular 18, for whom we have paired VERDICT MRI and mp-MRI data as well

as annotations. In this experiment we use only MRI-U-Net. Since the number of

patients we have in our disposal is smaller compared to the previous experiments
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(Sec. 3.4.1), we reduce the number of layers of the network to avoid overfitting.

We train and evaluate the network on labelled malignant and benign ROIs. Fig. 3.6

shows the receiver operating characteristic (ROC) curves of MRI-U-Net when train-

ing and test is performed on the raw VERDICT MRI data, the ADC map and the

raw DW-MRI data from the mp-MRI acquisition. The results show that MRI-U-

Net achieves better performance (AUC of 92.40%) on VERDICT MRI data. When

the ADC map and the raw DW-MRI data from the mp-MRI acquisition are used,

it achieves an AUC of 86.07% and 86.94% respectively. This indicates that VER-

DICT MRI may encode richer information allowing for better discrimination of the

different types of lesions. However, training and evaluation is performed on a very

small number of subjects and thus further analysis is required.

3.5 Conclusion

In this chapter we investigate the potential of model-free prostate lesion classifi-

cation on the raw VERDICT MRI data using FCNs and we examine whether raw

VERDICT MRI allows for better classification of prostate lesions compared to the

raw DW data and the ADC map from the mp-MRI acquisition. To this end, we adapt

and evaluate two FCNs (MRI-U-Net, MRI-ResNet) architectures. Previous studies

that are based on mp-MRI data to provide an automated solution for prostate le-

sion classification use DW data from mp-MRI acquisitions. In this work, we use

DW data from VERDICT MRI that has a richer acquisition protocol compared to

mp-MRI; VERDICT MRI data is acquired for 5 b-values in 3 orthogonal directions.

Our preliminary results indicate that i) FCNs trained on VERDICT MRI

achieve good performance in differentiating between malignant and benign lesions

and (Sec. 3.4.1) ii) FCNs trained and evaluated on VERDICT MRI perform better

than FCNs trained and evaluated on the naive DW data and the ADC from mp-MRI

acquisitions (Sec. 3.4.2). However, the current work has some important limitations

that have to be addressed in the future.

Firstly, our current work relies on annotations of index lesions only, not allow-

ing us to train accurate models. Incorrectly labeled data hinder the generalisation of
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the discriminate models – labeling errors may be memorised leading to undesired

biases [131, 132] – and have detrimental effects on the validity of model evaluation,

potentially leading to incorrect conclusions. Thus, it is important that we obtain

annotations for the all the lesions in the entire volume. Future work will focus on

collecting a dataset where all lesions are annotated. We also note here that anno-

tating large-scale is a time consuming task and requires expertise; only radiologists

with experience in prostate mp-MRI reporting are able to accurately annotate the

lesions. Thus, obtaining large labeled datasets, especially for new imaging tech-

niques, is not always feasible. Future work will also focus on domain adaptation

that allows to mitigate this problem by exploiting training samples from an existing,

densely-annotated domain within a novel, sparsely-annotated domain.

Second, as we mentioned in Sec. 3.2, our current work relies on labels cor-

responding to PI-RADS scores. However, the ultimate goal is to accurate differ-

entiate between clinically significant and non-clinically significant prostate cancer;

clinically significant cancer is defined as Gleason score of 7 or greater. Recent stud-

ies [92, 95, 133, 134, 135, 136, 94] focus on the development of deep learning meth-

ods for discriminating between clinically significant and non-clinically significant

cancer on mp-MRI where biopsy-based [92, 95, 133, 134, 135] or prostatectomy-

based [136, 94] annotations serve as ground truth. The results of these studies

indicate that deep learning models achieve high diagnostic accuracy. Future work

will focus on obtaining biopsy-based ground for pairs of VERDICT MRI and DW-

MRI data from mp-MRI acquisitions; this will allow to examine more thoroughly

whether FCNs that rely on VERDICT MRI can better discriminate between clini-

cally significant and non-clinically significant cancer than models that rely on the

naive DW data from mp-MRI acquisitions.



Chapter 4

Semi-supervised domain adaptation

for lesion segmentation

As we discussed in Sec. 3.5, accurately annotating large training datasets is a chal-

lenging task impeding the adoption of novel imaging modalities for learning-based

medical image analysis. In this chapter we propose a semi-supervised domain adap-

tation method to address this problem. We demonstrate the effectiveness of our ap-

proach on VERDICT MRI; however, it is quite general can be applied in other appli-

cations where the amount of labeled training data for the domain of interest is lim-

ited. Our code is publicly available at https://github.com/elchiou/DA.

This chapter contains material from [28, 29], which were published at MICCAI

2020 and at ISMRM 2020.

4.1 Introduction
Domain adaptation can be used to exploit training samples from an existing,

densely-annotated domain within a novel, sparsely-annotated domain, by bridging

the differences between the two domains. This can facilitate the training of power-

ful convolutional neural networks (CNNs) for novel medical imaging modalities or

acquisition protocols, effectively compensating for the limited amount of training

data available to train CNNs in the new domain.

The assumption underlying most domain adaptation methods is that one can

align the two domains either by extracting domain-invariant representations (fea-

https://github.com/elchiou/DA
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tures), or by establishing a ‘translation’ between the two domains at the signal level,

where in any domain the ‘resident’ and the translated signals are statistically indis-

tinguishable.

In particular for medical imaging, [137] and [138] rely on adversarial train-

ing to align the feature distributions between the source and the target domain for

medical image classification and segmentation respectively. Pixel-level distribution

alignment is performed by [17, 18, 19, 20], who use CycleGAN [139] to map source

domain images to the style of the target domain; they further combine the transla-

tion network with a task-specific loss to penalize semantic inconsistency between

the source and the synthetic images. The synthetic images are used to train models

for image segmentation in the target domain. Ouyang et al. [140] perform adver-

sarial training to learn a shared, domain-invariant latent space which is exploited

during segmentation. They show that their approach is effective in cases where

target-domain data is scarce. Similarly, [141] embed the input images from both

domains onto a domain-specific style space and a shared content space. Then, they

use the content-only images to train a segmentation model that operates well in both

domains. However, their approach does not necessarily preserve crucial semantic

information in the content-only images.

These methods rely on the strong assumption that the two domains can be

aligned. However, recent works on the closely related problem of unsupervised im-

age translation [142, 143, 144] have highlighted that this is a strong assumption

and is frequently violated in practice. As a natural image example, an image taken

at night can have many day-time counterparts, revealed by light; similarly in med-

ical imaging, a different imaging protocol can reveal structures that had previously

passed unnoticed. In technical terms, the translation can be one-to-many, or, stated

in probabilistic terms, multi-modal [142, 143, 144]. In particular, we consider the

source domain XS which is to be mapped to fthe target domain XT ). We are given

samples that are drawn from the two marginal distributions P(XS) and P(XT ) and

the translation generates a diverse set of output XS→T , corresponding to different

modes in the distribution P(XT |XS). Using a one-to-one translation network in such
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Figure 4.1: One-to-many mapping from one mp-MRI image (left) to four VERDICT MRI
translations: our network can generate samples with both local and global struc-
ture variation, while at the same time preserving the critical structure corre-
sponding to the prostate lesion, shown as a red circle. We note that the lesion
area is annotated by a physician on the leftmost image, but is not used as input
to the translation network - instead the translation network learns to preserve le-
sion structures thanks to the end-to-end discriminative training (details in text).

a setting can harm performance, since the translation may predict the mean of the

underlying multi-modal distribution, rather than provide diverse, realistic samples

from it.

In our work we accommodate the inherent uncertainty in the cross-domain

mapping and, as shown in Figure 4.1, generate multiple outputs conditioned on a

single input, thereby allowing for better generalization of the segmentation network

in the target domain. As in recent studies [17, 18, 19, 20], we use GANs [145] to

align the source and target domains, but go beyond their one-to-one, deterministic

mapping approaches. In addition, inspired by [17, 18, 19, 15], we enforce seman-

tic consistency between the real and synthetic images by exploiting source-domain

lesion segmentation supervision to train target-domain networks operating on the

synthetic images. This results in training networks that can generate diverse out-

puts while at the same time preserving critical structures - such as the lesion area in

Figure 4.1. We further accommodate the statistical discrepancies between real and

synthetic data by introducing residual adapters (RAs) [146, 29] in the segmenta-

tion network. These capture domain-specific properties and allow the segmentation

network to generalize better across the two domains.

We demonstrate the effectiveness of our approach in prostate lesion segmen-

tation on VERDICT MRI. As we discussed in Sec. 3.4.1 and Sec. 3.5, annotating

large amounts of training data for the adoption of VERDICT MRI for learning-

based medical image analysis is challenging due to labor and expertise required.
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Figure 4.2: Overview of our domain adaptation framework: we train a noise-driven domain
translation network in tandem with a discriminatively supervised segmentation
network in the target domain; GAN-type losses align the translated samples
with the target distribution, while residual adapters allow the segmentation net-
work to compensate for remaining discrepancies.

On the other hand, large scale, labeled mp-MRI datasets exist [93, 41]. As shown

experimentally, our approach largely improves the generalization capabilities of a

lesion segmentation model on VERDICT MRI by exploiting label DW-MRI data

from mp-MRI acquisitions.

4.2 Method
Our approach relies on a unified network for cross-modal image synthesis and seg-

mentation, that is trained end-to-end with a combination of objective functions. As

shown in Fig. 4.2, at the core of this network is an image-to-image translation

network that maps images from the source (’S’) to the target (’T’) domain. The

translation network is trained in tandem with a segmentation network that operates

in the target domain, and is trained with both the synthetic and the few real an-

notated target-domain images. Beyond these standard components, our approach

relies on three additional components: firstly, we sample a latent variable from a

Gaussian distribution when translating to the target domain; this represents struc-

tures that cannot be accounted by a deterministic mapping, and can result in one-

to-many translation when needed. Secondly, we introduce residual adapters (RAs)

to a common backbone network for semantic segmentation, allowing the discrimi-

native training to accommodate any remaining discrepancies between the real and
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Figure 4.3: Example of the data coming from the source and the target domains: stan-
dard DW-MRI (source domain) consists of 5 input channels (4 b-values and the
ADC map) while VERDICT MRI consists of 15 input channels (5 b-values in
3 orthogonal directions)

synthetic target domain images. Finally, we use a dual translation network from the

target to the source domain, allowing us to use cycle-consistency in domain adapta-

tion [147, 139, 143]; the cycle constraint allows us to disentangle the deterministic,

transferable part from the stochastic, non-transferable part, which is filled in by

Gaussian sampling, as mentioned earlier.

Problem formulation. Having provided a broad outline of our method, we now

turn to a more detailed technical description. We consider the problem of domain

adaptation in prostate lesion segmentation. We assume that the source domain,

XS, contains NS images, xS ∈ XS, with associated segmentation masks, yS ∈ YS.

Similarly, the sparsely labeled target domain, XT , consists of NT images, xT ∈ XT .

A subset X̃T of XT comes with associated segmentation masks, yT ∈ YT . Our goal

is to train a model that provides accurate predictions in the target domain. As shown

in Fig. 4.3, there is a substantial domain gap between the two domains precluding

the naive approach of training a network on the source domain and then deploying

it in the target domain. The proposed framework consists of two main components,

i.e. an image-to-image translation network and a segmentation network described

below.
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Segmentation Network

The segmentation network (Fig. 4.2), Seg, operates on image-label pairs of both

real, XT , and synthetic data, XS→T , translated from source to target. An encoder-

decoder network [122, 120] is the main backbone which serves both domains. To

compensate further for differences in the feature statistics of real and synthetic data

we install residual adapter modules [146] in parallel to each of the convolutional

layer of the backbone. Introducing residual adapters ensures that most of the pa-

rameters stay the same with the network, but also that the new unit introduces a

small, but effective modification that accommodates the remaining statistical dis-

crepancies of the two domains.

More formally, let l be a convolutional layer in the segmentation network and

F l ∈ Rk×k×Ci×Co be a set of filters for that layer, where k× k is the kernel size and

Ci, Co are the number of input and output feature channels respectively. Let also

Zl
j ∈ R1×1×Ci×Co be a set of domain-specific residual adapter filters of domain j,

where j ∈ {1,2}, installed in parallel with the existing set of filters Fl . Given an

input tensor xl ∈ RH×W×Ci , the output yl ∈ RH×W×Co of layer l is given by

yl = F l ∗ xl +Zl
j ∗ xl. (4.1)

We train the segmentation network by optimizing the following objective

LSeg(Seg, X̃T ,YT ,XS→T ,YS) =

LDSC(Seg, X̃T ,YT )+LDSC(Seg,XS→T ,YS).
(4.2)

The dice loss, LDSC, based on dice coefficient, is given by

LDSC(Seg,X ,Y) =−
2∑(x,y)∈(X ,Y)∑

K
k=1 pkyk

∑(x,y)∈(X ,Y)∑
K
k=1(p2

k + y2
k)
, (4.3)

where K the number of voxels in the input images and p = Seg(x), the softmax

output of the segmentation network. We adopt this objective function since it is

a differentiable approximation of a criterion that is well-adapted to our task [148,

149].
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Stochastic Translation Network

Recently, several studies [142, 143] have pointed out that cross-domain mapping is

inherently multi-modal and proposed approaches to produce multiple outputs con-

ditioned on a single input. Here we use MUNIT [143] to illustrate the key idea.

As it is illustrated in Figure 4.2 the image-to-image translation network consists

of content encoders Ec
S, Ec

T , style encoders Es
S, Es

T , generators GS, GT and domain

discriminators DS, DT for both domains. The content encoders Ec
S, Ec

T map im-

ages from the two domains onto a domain-invariant content space C (Ec
S : XS → C,

Ec
T : XT → C) and the style encoders Es

S, Es
T map the images onto domain-specific

style spaces SS (Es
S :XS →SS) and ST (Es

T :XT →ST ). The content code can be un-

derstood as the underlying anatomy which is the information that we want transfer

during the translation while the style codes capture information related to the imag-

ing modalities. Image-to-image translation is performed by combining the content

code extracted from a given input and a random style code sampled from the target-

style space. For instance, to translate an image xS ∈ XS to XT we first extract its

content code c = Ec
S(xS). The generator GT uses the extracted content code c and a

randomly drawn style code sT ∈ ST to produce the final output xS→T = GT (c,sT ).

By sampling random style codes from the style spaces SS and ST the generators GS

and GT are able to produce diverse outputs. We train the networks with a loss func-

tion that consists of domain adversarial, self-reconstruction, latent reconstruction,

cycle-consistency and segmentation losses.

Domain adversarial loss. We utilize GANs to match the distribution between the

synthetic and the real images of the two domains. The adversarial discriminators

DT , DS aim at discriminating between real and synthetic images, while the genera-

tors GT , GS aim at generating realistic images that fool the discriminators. For GT

and DT the GAN loss is defined as

LT
GAN(E

c
S,GT ,DT ,ST ,XS) =

ExS∼XS,sT∼ST [log(1−DT (GT (Ec
S(xS),sT )))]+ExT∼XT [log(DT (xT ))].

(4.4)

Self-reconstruction loss. Given the encoded content and style codes of a source-
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domain image the generator GS should be able to decode them back to the original

one.

LS
recon(GS,Es

S,E
c
S,XS) = ExS∼XS [∥GS(Ec

S(xS),Es
S(xS))− xS∥1]. (4.5)

Latent reconstruction loss. To encourage the translated image to preserve the

content of the source image, we require that a latent code c sampled from the latent

distribution can be reconstructed after decoding and encoding.

LcS
recon(E

c
S,GT ,Ec

T ,XS,ST ) =

ExS∼XS,sT∼ST [∥Ec
T (GT (Ec

S(xs),sT ))−Ec
S(xs)∥1].

(4.6)

Similarly, to align the style representation with a Gaussian prior distribution, we

enforce the same constrain for the latent style code.

LsT
recon(E

c
S,GT ,Es

T ,XS,ST ) =

ExS∼XS,sT∼ST [∥Es
T (GT (Ec

S(xs),sT ))− sT )∥1].
(4.7)

Cycle-consistency loss. To facilitate training we enforce cross-cycle consistency

which implies that if we translate an image to the target domain and then translate it

back to the source domain using the extracted source-domain style code, we should

be able to obtain the original image.

LS
cyc(E

c
S,E

s
S,GT ,Ec

T ,GS,XS,ST ) =

ExS∼XS,sT∼ST [∥GS(Ec
T (GT (Ec

S(xS),sT )),Es
S(xS))− xS∥1].

(4.8)

LS
GAN , LT

recon, LcT
recon, LsS

recon, LT
cyc are defined in a similar way.

Segmentation loss. To enforce the generator to preserve the lesions, we enrich the

network with segmentation supervision on the synthetic images. The segmentation

loss on the synthetic images is given by

LSynth
Seg (Seg,GT ,Ec

S,XS,YS,ST ) = LDSC(Seg,GT (Ec
S(XS),ST ),YS). (4.9)

The full objective is given by
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min
Ec

S ,E
s
S,E

c
T ,E

s
T ,GS,GT

max
DS,DT

λGAN(LS
GAN +LT

GAN)+λx(LS
recon +LT

recon)

+λc(LcS
recon +LcT

recon)+λs(LsS
recon +LsT

recon)

+λcyc(LS
cyc +LT

cyc)+LSynth
Seg ,

(4.10)

where λGAN , λx, λc, λs, λcyc are weights that control the importance of each term.

Implementation details

We implement our model using Pytorch [130]. The content encoders consist of

several convolutional layers and residual blocks followed by instance normaliza-

tion [150]. The style encoders consist of convolutional layers followed by fully

connected layers. The decoders include residual blocks followed by upsampling

and convolutional layers. The residual blocks are followed by adaptive instance

normalization (AdaIN) [151] layers to adjust the style of the output image. In par-

ticular, AdaIN aligns the mean and variance of the content code to the style of

the target domain since the affine parameters of AdaIN are generated by a multi-

layer perceptron given a random style code sampled from the style space of the

target domain. Sampling different style code allows us to obtain different affine

parameters and generate diverse translations that adopt the appearance properties

of the target domain. The encoder of the segmentation network is a standard

ResNet [123] consisting of several convolutional layers while the decoder consists

of several upsampling and convolutional layers. For training we use Adam opti-

mizer, a batch size of 32 and a learning rate of 0.0001. We make our code available

at https://github.com/elchiou/DA.

4.3 Datasets
VERDICT MRI: We use VERDICT MRI data collected from 60 men with a sus-

picion of cancer. We have provided the acquisition details for VERDICT MRI

in Sec. 3.2. A dedicated radiologist, highly experienced in prostate mp-MRI, con-

toured the lesions on VERDICT MRI using mp-MRI for guidance.

https://github.com/elchiou/DA
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DW-MRI from mp-MRI acquisition: We use DW-MRI data from the ProstateX

challenge dataset [93] which consists of training mp-MRI data acquired from 204

patients. The DW-MRI data were acquired with a single-shot echo planar imaging

sequence with a voxel size of 2× 2× 3.6 mm3, 3.6 mm slice thickness. Three b-

values were acquired (50,400,800 s/mm2 ), and subsequently, the ADC map and

a b-value image at b = 1400 s/mm2 were calculated by the scanner software. In

this study, we use DW-MRI data from 80 patients. Since the ProstateX dataset

provides only the position of the lesion, a dedicated radiologist manually annotated

the lesions on the ADC map using as reference the provided position of the lesion.

4.4 Experiments

4.4.1 Quantitative results

In this section we evaluate the performance of our approach and the impact of the

ratio of synthetic to real data on the performance. We also provide qualitative results

and quantitative results related to the effect of sampling random style codes on the

performance.

Performance evaluation. We first compare our approach to several baselines.

i)VERDICT MRI only: we train the segmentation network only on VERDICT

MRI. ii) Finetuning: we pre-train on mp-MRI and then perform finetuning using

the VERDICT MRI data. iii) RAs: we pre-train on mp-MRI, then we install RAs

in parallel to each of the convolutional layers of the pre-trained network and update

them using VERDICT MRI. iv) MUNIT: we use MUNIT to map from source to tar-

get without segmentation supervision. v) CycleGAN + LSynth
Seg : we use CycleGAN

and segmentation supervision to perform the translation, an approach similar to the

one proposed in [20]. vi) CycleGAN + LSynth
Seg + RAs: we use (v) for the translation

and introduce RAs to the segmentation network. We evaluate the performance based

on the average recall, precision, dice similarity coefficient (DSC), and average pre-

cision (AP). We report the results in Table 4.1. The proposed approach yields sub-

stantial improvements and outperforms all baselines including CycleGAN, which

indicates that accommodating the uncertainty in the cross-domain mapping allows
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Model Recall Precision DSC AP
VERDICT MRI only 67.1 (±14.2) 59.6 (±11.5) 62.4 (±13.4) 63.5 (±13.1)
Finetuning 68.4 (±12.4) 62.5 (±13.5) 64.7 (±11.2) 65.8 (±14.7)
RAs 66.6 (±11.6) 67.0 (±8.8) 65.7 (±10.2) 66.6 (±12.6)
MUNIT 65.2 (±10.2) 64.2 (±13.7) 64.4 (±11.3) 68.2 (±12.0)
CycleGAN + LSynth

Seg 64.5 (±10.4) 66.1 (±10.1) 64.8 (±8.7) 70.1 (±9.8)

CycleGAN + LSynth
Seg + RAs 60.9 (±10.7) 74.0 (±11.8) 66.6 (±13.6) 71.6 (±11.3)

MUNIT + LSynth
Seg (Ours) 71.8 (±7.8) 68.0 (±6.8) 69.8 (±7.9) 73.5 (±8.1)

MUNIT + LSynth
Seg + RAs (Ours) 69.2 (±8.6) 71.2 (±9.7) 69.9 (±9.0) 75.4 (±9.7)

Table 4.1: Average recall, precision, dice similarity coefficient (DSC), and average preci-
sion (AP) across 5 folds. The results are given in mean (±std) format.

us to learn better representations for the target domain. Compared to the naive MU-

NIT without segmentation supervision, LSynth
Seg , our approach performs better since it

successfully preserves the lesions during the translation. Finally, introducing RAs in

the segmentation networks further improves the performance of both CyclgeGAN

+ LSynth
Seg and MUNIT + LSynth

Seg .

Impact of sampling on the performance. To experimentally validate that sam-

pling different style codes enhances the performance, we perform two experiments:

i) we keep the style code of the target domain fixed during the translation and ii)

we use the encoded style code of the source domain. We evaluate the performance

based on the mean recall, precision, dice similarity coefficient (DSC), and average

precision (AP) across 5 folds. The results (Table 4.2) show that indeed sampling

different style codes improves the performance.

Model Recall Precision DSC AP
MUNIT + LSynth

Seg + fixed sT 68.4 (±9.0) 65.3 (±7.9) 67.0 (±8.8) 70.0 (±8.9)

MUNIT + LSynth
Seg + encoded sS 61.5 (±12.4) 68.5 (±9.2) 64.5 (±10.6) 67.4 (±10.6)

MUNIT + LSynth
Seg (Ours) 71.8 (±7.8) 68.0 (±6.8) 69.8 (±7.9) 73.5 (±8.1)

Table 4.2: Impact of sampling on the performance. Average recall, precision, dice similar-
ity coefficient (DSC), and average precision (AP) across 5 folds. The results are
given in mean (±std) format.

Impact of the ratio of synthetic to real data on the performance. Using syn-

thetic data is motivated by the fact that annotating large datasets can be challenging

in medical applications. We therefore evaluate the impact of the ratio of synthetic

to real data. To this end, we first vary the percentage of real data while keeping
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fixed the amount of synthetic data (Fig. 4.4 (top, left)). We compare our approach

to a segmentation network trained only on real data and to [20] where CycleGAN is

used for the generation of synthetic data. Our approach outperforms both baselines.

Figure 4.4 (top, right) shows the performance when we vary the percentage of syn-

thetic samples while fixing the percentage of real ones. The AP of our approach

increases as we increase the amount of synthetic data. The baseline also improves

but we systematically outperform it. Figure 4.4 (bottom) shows the performance

of our approach when we vary the percentage of real data while keeping fixed the

percentage of synthetic. Here, we also vary the ratio of real to synthetic data in a

mini-batch during training. Note that when the percentage of real data is small, a

large ratio of synthetic to real data in the mini-batch delivers better results.

Impact of residual adapters in the performance. Figure 4.5 shows the impact of

residual adapters in the performance for different dataset sizes. We vary the per-

centage of real data while keeping fixed the amount of synthetic data. Introducing

residual adapters in the segmentation network while using MUNIT and segmen-

tation supervision (MUNIT + LSynth
Seg + RAs) during the translation systematically

improves performance for different dataset sizes.

4.4.2 Qualitative results

Figure 4.6 shows the mapping from mp-MRI to VERDICT. Our approach is able

to generate multiple outputs while preserving the critical structure corresponding

to the prostate lesion. In this work, we do not provide quantitative results for the

image-to-image translation. Instead, we evaluate the quality of the translated images

visually and based on the results we obtain for the task at hand.

In Figure 4.7 we present lesion segmentation results produced by the different

models for two patients. i) MUNIT + LSynth
Seg + RAs (Ours): we use stochastic

translation and segmentation supervision for the translation and introduce RAs in

the segmentation network. ii) CycleGan + LSynth
Seg + RAs: we use deterministic

translation and segmentation supervision to perform the translation, and introduce

residual adapters (RAs) in the segmentation network. iii) VERDICT MRI only: we

train the segmentation network only on real VERDICT MRI.
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Figure 4.4: Impact of the ratio of synthetic to real data on the performance. (Top, left)
Average precision (AP) as a function of the percentage of real samples used
given a constant number of synthetic ones. (Top, right) AP as a function of
the number of synthetic examples used given a constant number of real ones.
(Bottom) AP as a function of the percentage of real data used given a constant
number of synthetic ones. Here, the ratio of real to synthetic data in a mini-
batch also varies during training.

4.5 Conclusion

In this chapter we propose a domain adaptation approach for lesion segmentation

on VERDICT-MRI. Our approach relies on stochastic generative modelling to gen-

erate multiple outputs conditioned on a single input allowing the extraction of richer

representations for the task of interest in the target domain. Compared to its deter-

ministic counterparts, our approach yields substantial improvements across a broad
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Figure 4.5: Impact of residual adapters (RAs) in the average precision (AP) for different
dataset sizes. We vary the percentage of real data while keeping fixed the
amount of synthetic data. Introducing residual adapters in the segmentation
network while using MUNIT and segmentation supervision (MUNIT + LSynth

Seg
+ RAs) during the translation systematically improves performance for differ-
ent dataset sizes.

Real mp-MRI Synthetic VERDICT-MRI Real VERDICT-MRI

Figure 4.6: One-to-many mapping from one mp-MRI (left) to three VERDICT MRI trans-
lations (middle) for two different patients (rows): Our network can generate
samples with both local and global structure variation, while at the same time
preserving the critical structure corresponding to the prostate lesion. The right
column shows two real VERDICT MRI samples as an example of data from
the target domain.

range of dataset sizes, increasingly strong baselines, and evaluation measures.
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Figure 4.7: Lesion segmentation results for two patients. MUNIT + LSynth
Seg + RAs (Ours):

we use stochastic translation and segmentation supervision for the translation
and introduce RAs in the segmentation network. Cyclegan + LSynth

Seg + RAs: we
use deterministic translation and segmentation supervision for the translation
and introduce RAs in the segmentation network. VERDICT MRI only: Trained
only on real data.



Chapter 5

Unsupervised domain adaptation for

lesion segmentation

In Chapter 4 we proposed a semi-supervised domain adaptation that relies on

stochastic translation. In this chapter we turn our attention on the unsupervised

domain adaptation where facing new challenges due to the complete lack of la-

beled data in the target domain. In particular, as in Chapter 4, we rely on stochastic

generative modelling to translate across the source and the target domain at pixel

space and we introduce two new loss functions that promote semantic consistency.

We demonstrate the effectiveness of our approach on VERDICT MRI; however, it

is quite general can be applied in other application where the amount of labeled

training data for the domain of interest is limited. This chapter contains material

from [30, 31], which were published at DART@MICCAI 2020 and at ISMRM

2021.

5.1 Introduction
In this work we address the challenge of adapting across two heterogeneous do-

mains where both the distribution and the dimensionality of the input features are

different (Fig. 4.3) in cases where there is a complete lack of labeled data for the

target domain. As in Chapter 4, we rely on stochastic translation [143] to align

the two domains at pixel-level; in Chapter 4 we showed that stochastic translation

yields clear improvements in heterogeneous domain adaptation tasks compared to
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deterministic, CycleGAN-based [139] translation approaches. However, these im-

provements have been obtained with semi-supervised learning, where a few labeled

target-domain images are available, whereas our goal is unsupervised domain adap-

tation. To this end we introduce a semantic cycle-consistency loss on the cycle-

reconstructed source images; if a source image is translated to the target domain

and then back to the source domain, we require that critical structures are preserved.

We also introduce a pseudo-labeling loss that allows us to use the unlabeled target

data to supervise the target-domain segmentation network. In particular we translate

the target data to the source domain, predict their labels according to a pre-trained

source-domain segmentation network and use the generated pseudo-labels to su-

pervise the target-domain segmentation network. This allows us to use exclusively

target-domain statistics and train highly discriminative models. As in Chapter 4

we demonstrate the effectiveness of our approach in prostate lesion segmentation

on VERDICT MRI. As shown experimentally, our approach largely improves the

generalization capabilities of a lesion segmentation model on VERDICT MRI by

leveraging labeled DW data from mp-MRI acquisitions.

Most domain adaptation methods align the two domains either by extract-

ing domain-invariant features or by aligning the two domains at the raw pixel

space. Ren et al. [137] and Kamnitsas et al. [138], rely on adversarial train-

ing to align the feature distributions between the source and the target domain

for medical image classification and segmentation respectively. Pixel-level ap-

proaches [17, 18, 19, 20], use GAN-based methods [139, 143] to align the source

and the target domains at pixel level. Chen et al. [152] align simultaneously the

two domains at pixel- and feature-level by utilizing adversarial training. Ouyang

et al. [140] combine a variational autoencoder (VAE)-based feature prior matching

and pixel-level adversarial training to learn a domain-invariant latent space which

is exploited during segmentation. Similarly, [141] perform pixel-level adversarial

training to extract content-only images and use them to train a segmentation model

that operates well in both domains. Other studies exploit unlabeled target domain

data during the discriminative training. Bateson et al. [153] and Guodong et al.
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Figure 5.1: We force a network for stochastic translation across domains to preserve se-
mantics through a semantic segmentation-based loss. The image-to-image
translation network translates source-domain images to the style of the tar-
get domain by combining a domain-invariant content code c with a random
code sT . We introduce a semantic cycle-consistency loss, LSem, on the cycle-
reconstructed images that ensures that the prostate lesions are successfully pre-
served.

[154] use entropy minimization on the prediction of target data as an extra regu-

larization while [155] propose a teacher-student framework to train a model using

labeled and unlabeled target data as well as labeled source data.

5.2 Method

Problem formulation

We consider the problem of domain adaptation in prostate lesion segmentation. Let

XS ⊂RH×W×CS be a set of NS source images and YS ⊂{0,1}H,W their segmentation

masks. The sample xS ∈ XS is a H ×W ×CS image and the entry y(h,w)S of the mask

yS provides the label of voxel (h,w) as a one-hot vector. Let also XT ⊂ RH×W×CT

be a set of NT unlabeled target images. Sample xT ∈ XT is an H ×W ×CT image.

Stochastic translation with semantic cycle-consistency

We rely on stochastic translation [143] to learn the mapping between the two do-

mains and introduce a semantic cycle-consistency loss to enforce the cross-domain

mapping to preserve critical structures.

The image-to-image translation network (Fig. 5.1) consists of content en-

coders Ec
S, Ec

T , style encoders Es
S, Es

T , generators GS, GT and domain discrimi-



5.2. Method 80

nators DS, DT for both domains. The content encoders Ec
S, Ec

T extract a domain-

invariant content code c ∈ C (Ec
S : XS → C, Ec

T : XT → C) while the style encoders

Es
S, Es

T extract domain-specific style codes sS ∈ SS (Es
S : XS → SS) and sT ∈ ST

(Es
T : XT → ST ). Image-to-image translation is performed by combining the con-

tent code (c = Ec
S(XS)) extracted from a given input (xS ∈ XS) and a random style

code sT sampled from the target-style space. We note that the random style-code

sampled from a Gaussian distribution represents structures that cannot be accounted

by a deterministic mapping and results in one-to-many translation. We train the

networks with a loss function consisting of domain adversarial, self-reconstruction,

latent reconstruction and semantic cycle-consistency losses.

Domain adversarial loss.

LT
GAN = EcS∼C,sT∼ST [log(1−DT (GT (cS,sT )))]+ExT∼XT [log(DT (xT ))].

Self-reconstruction loss.

LS
recon = ExS∼XS [∥GS(Ec

S(xS),Es
S(xS))− xS∥1].

Latent reconstruction loss.

LcS
recon = ExS∼XS,sT∼ST [∥Ec

T (GT (Ec
S(xS),sT ))−Ec

S(xS)∥1].

LST
recon = ExS∼XS,sT∼ST [∥Es

T (GT (Ec
S(xS),sT ))− sT )∥1].

Cycle-consistency loss.

LS
cyc = ExS∼XS,sT∼ST [∥GS(Ec

T (GT (Ec
S(xS),sT )),Es

S(xS))− xS∥1].

LS
GAN , LT

recon, LcT
recon, LsS

recon, LT
cyc are defined in a similar way.

Semantic cycle-consistency loss. Recent studies [17, 19, 20] enforce semantic

consistency between the real source and the synthetic target images by exploiting

a target-domain segmentation network trained on a few available labeled target-

domain images. However, in the unsupervised scenario, where there is no super-

vision available for the target domain, such approach is not feasible. To this end

we introduce a semantic cycle-consistency loss or lesion segmentation loss on the

cycle-reconstructed source images xS→T→S; if a source image is translated to the

target domain and then back to the source domain, we require that critical struc-

tures, corresponding to lesions, are preserved. The naive cycle-consistency loss,

introduced in [139], penalizes inconsistencies in the entire image and may fail to
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Figure 5.2: Pseudo-labeling through translation to the source domain: We translate the tar-
get data to the source domain and predict their pseudo-labels according to a
pre-trained source-domain segmentation network SegS.

preserve small structures corresponding to lesions. In contrast our semantic cycle-

consistency loss penalizes inconsistencies in the label space enforcing the transla-

tion network to preserve the lesions. The semantic cycle-consistency loss is a soft

generalization of the dice score given by

LSem =−
2∑h,w p(h,w)y(h,w)S

∑h,w(p(h,w)2
+ y(h,w)

2

S )
, (5.1)

where p(h,w) is the predictive probability of class 1 for voxel (h,w) provided by the

pre-trained source network SegS. The full objective is given by

min
Ec

S ,E
s
S,E

c
T ,E

s
T ,GS,GT

max
DS,DT

λGAN(LS
GAN +LT

GAN)+λx(LS
recon +LT

recon)

+λc(LcS
recon +LcT

recon)+λs(LsS
recon +LsT

recon)+λcyc(LS
cyc +LT

cyc)

+λsemLsem,

(5.2)

where λGAN , λx, λc, λs, λcyc, λsem control the importance of each term.

Pseudo-labeling through translation to the source

We generate pseudo-labels for the target images by translating them to the source

domain and predicting their labels according to the pre-trained source-domain seg-

mentation network SegS, trained on the labeled source data (Fig. 5.2).

Given a synthetic source image xT→S and the segmentation network SegS we

obtain a soft-segmentation map, pxT→S = SegS(xT→S), where each vector p(h,w)xT→S cor-

responds to a probability distribution over classes. Assuming that high-scoring

pixel-wise predictions on synthetic source samples are correct, we obtain a segmen-
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Figure 5.3: We use data that have exclusively target-domain statistics to train the target
segmentation network (SegT ). We translate the source data to the target domain
and supervise SegT using the ground-truth segmentation masks. We also use
target pseudo-labels to supervise SegT .

tation mask ŷT by selecting high-scoring pixels with a fixed threshold. Each entry

ŷ(h,w)T can be either a discrete one-hot vector for high-scoring pixels or a zero-vector

for low-scoring pixels. The pseudo-labeling configuration is defined as follows

ŷ(h,w,c)T =


1, if c = argmax

c
p(h,w)xT→S and p(h,w,c)xT→S > threshold

0, otherwise.
(5.3)

Segmentation Network

The target-domain segmentation network, SegT , is an encoder-decoder net-

work [122, 120]. We supervise SegT using both the synthetic target images and

the corresponding source labels and the real target images and their pseudo-labels

(Fig. 5.3). Given an image x and its segmentation mask y, the segmentation loss is

defined as

LSeg(x,y) =−
2∑h,w p(h,w,1)y(h,w,1)

∑h,w(p(h,w,1)2
+ y(h,w,1)2

)
, (5.4)

where p(h,w,1) is the predictive probability of class 1 for voxel (h,w).

As in recent studies [156, 153], to further regularize the network on the target-

domain data for which we have not obtained pseudo-labels, we apply entropy-based

regularization. The loss Lent is defined as follows

LEnt(xT ) = ∑
h,w

−1
logC

C

∑
c=1

p(h,w,c)xT log p(h,w,c)xT , (5.5)
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where p(h,w,c) is the predictive probability of class c, c = {0,1}, for voxel (h,w).

The full objective is given by minSegT LSeg +LEnt .

Implementation details

We implement our framework using Pytorch [130].

Image-to-image translation network: The content encoders consist of convolu-

tional layers and residual blocks followed by instance normalization [150]. The

style encoders consist of convolutional layers followed by fully connected lay-

ers. The decoders include residual blocks followed by upsampling and convolu-

tional layers. The residual blocks are followed by adaptive instance normalization

(AdaIN) [151] layers to adjust the style of the output image. The discriminators

consist of convolutional layers. For training we use Adam optimizer, a batch size of

32, a learning rate of 0.0001 and set losses weights to λGAN = 1, λx = 10, λc = 1,

λs = 1, λsem = 10. We train the translation network for 50000 iterations.

Segmentation network: The encoder of the segmentation network is a standard

ResNet [123] consisting of convolutional layers while the decoder consists of up-

sampling and convolutional layers. For training we use stochastic gradient decent

and a batch size of 32. We split the training set into 80% training and 20% valida-

tion to select the learning rate, the number of iterations and the threshold to perform

pseudo-labeling.

Datasets

We use VERDICT MRI data from 90 patients since annotations for 30 more patients

become available and we use DW-MRI data from 80 patients from the ProstateX

challenge dataset [93]. We have provided the acquisition details for both VERDICT

MRI and DW-MRI from mp-MRI acquisitions in Sec. 4.3.

5.3 Results
We evaluate the performance based on the average recall, precision, dice similarity

coefficient (DSC), and average precision (AP) across 5-folds.

We compare our approach to several baselines. i)VERDICT-MRI: train using

VERDICT-MRI only. ii) VERDICT-MRI + Synth (MUNIT + LSem) : train us-
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Model Recall Precision DSC AP
VERDICT-MRI (Oracle) 66.2 (8.1) 70.5 (9.9) 68.9 (9.2) 72.1 (10.4)
VERDICT-MRI + Synth (MUNIT + LSem) 71.1 (8.9) 72.5 (10.4) 72.1 (8.7) 76.7 (9.6)
mp-MRI + EntMin (ADVENT [156]) 50.8 (12.3) 48.0 (11.4) 49.8 (13.0) 51.4 (13.9)
Synth (MUNIT) 51.5 (13.3) 60.6 (11.9) 53.6 (12.7) 60.2 (13.0)
Synth (MUNIT + LSem) 55.1 (13.9) 62.4 (12.8) 55.3 (10.9) 62.0 (13.4)
Synth (MUNIT + LSem) + EntMin 54.7 (11.5) 69.2 (10.3) 57.1 (10.8) 63.4 (12.8)
Synth (MUNIT + LSem) + PsLab 59.8 (10.1) 64.8 (11.1) 61.5 (10.3) 64.9 (10.1)
Synth (MUNIT + LSem) + EntMin + PsLab (Proposed) 61.4 (9.9) 66.9 (10.7) 62.1 (9.8) 65.6 (10.9)

Table 5.1: Average recall, precision, dice similarity coefficient (DSC), and average preci-
sion (AP) across 5 folds. The results are given in mean (±std) format.

ing real VERDICT-MRI and the synthetic VERDICT-MRI obtained from MUNIT

with semantic cycle-consistency loss. iii) mp-MRI + EntMin (ADVENT [156]):

train the model by minimizing the segmentation loss, LSeg(xS,yS), on the raw mp-

MRI and the entropy loss, LEnt(xT ), on VERDICT-MRI, an approach proposed

in [156, 153, 154]. iv) Synth (MUNIT): use the naive MUNIT to map from source

to target and train only on the synthetic data. v) Synth (MUNIT + LSem): use MU-

NIT with semantic cycle-consistency loss to translate from source to target. vi)

Synth (MUNIT + LSem) + EntMin: use (v) and entropy-based regularization on

VERDICT-MRI data. vii) Synth (MUNIT + LSem) + PsLab: use (v) and pseudo-

labels to train the segmentation network on real VERDICT-MRI. viii) Synth (MU-

NIT + LSem) + EntMin + PsLab: use (vi) and pseudo-labels to train the segmentation

network on real VERDICT-MRI.

We report the results in Table 5.1. We observe that the performance is poor

when the segmentation network is trained on the mp-MRI and VERDICT-MRI data

(mp-MRI + EntMin (ADVENT [156])). However, we observe that when we train

the network with synthetic VERDICT-MRI and real VERDICT-MRI (Synth (MU-

NIT + LSem) + EntMin) the performance improves. This justifies our assumption

that pixel-level alignment is beneficial in cases where there is a large distribution

shift. The performance further improves when we use pseudo-labels obtained from

confident predictions (Synth (MUNIT + LSem) + EntMin + PsLab). We also ob-

serve that compared to the naive MUNIT without the semantic cycle-consistency

loss (Synth (MUNIT)) our approach (Synth (MUNIT + LSem)) performs better

since it successfully preserves the lesions. When combining real and synthetic
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Figure 5.4: Lesion segmentation results for two patients - the proposed approach performs
well on the target domain despite the fact that it does not utilize any manual
target annotations during training.

data (VERDICT-MRI + Synth (MUNIT + LSem)) to train the network in a fully-

supervised manner we get better results compared to the oracle, where we use only

the real VERDICT-MRI. In Figure 5.4 we present lesion segmentation results pro-

duced by the different models for two patients. The results indicate that the pro-

posed approach performs well despite the fact that it does not use any manual an-

notations during training.

So far we have considered only the unsupervised case. However, our approach

can also be used in a semi-supervised setting. To evaluate the performance of our

method when labeled target data is available, we perform additional experiments

varying the percentage of labeled data; we use the pseudo-labels (PsLab) and en-

tropy minimization (EntMin) for the unlabeled data. Figure 5.5 shows that the per-

formance of our method improves as the percentage of real data increases and al-

ways outperforms the baseline that is trained only on the target domain.

5.4 Conclusion
In this chapter we proposed a domain adaptation approach for lesion segmentation.

Our approach relies on appearance alignment along with pseudo-labeling to train a

target domain classifier using exclusively target domain statistics. We demonstrate

the effectiveness of our approach for lesion segmentation on VERDICT-MRI which
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Figure 5.5: Performance as we vary the percentage of labeled target data used for training.
We observe that our method improves with more supervision and the improve-
ments introduced by our method over the baseline of target-only training carry
over all the way to the fully-supervised regime.

is an advanced imaging technique for cancer characterization. When compared to

several unsupervised domain adaptation approaches, our approach yields substantial

improvements, that consistently carry over to the semi-supervised and supervised

learning settings.



Chapter 6

Unsupervised domain adaptation for

semantic segmentation of urban

scenes

In this chapter, we further extend the approach proposed in Chapter 5 to unsu-

pervised domain adaptation for semantic segmentation of urban scenes. We fo-

cus on semantic segmentation of urban scenes since there are two benchmarks

available allowing us to compare our approach with recent state-of-the-art meth-

ods. As in Chapter 4, 5, we rely on stochastic generative modelling to capture

inherent translation ambiguities. This allows us to (i) train more accurate tar-

get networks by generating multiple outputs conditioned on the same source im-

age, leveraging both accurate translation and data augmentation for appearance

variability, (ii) impute robust pseudo-labels for the target data by averaging the

predictions of a source network on multiple translated versions of a single tar-

get image and (iii) train and ensemble diverse networks in the target domain by

modulating the degree of stochasticity in the translations. We report improve-

ments over strong recent baselines, leading to state-of-the-art unsupervised do-

main adaptation (UDA) results on two challenging semantic segmentation bench-

marks. Our code is publicly available at https://github.com/elchiou/

Beyond-deterministic-translation-for-UDA. This chapter contains

material from [32] which was published at BMVC 2022.

https://github.com/elchiou/Beyond-deterministic-translation-for-UDA
https://github.com/elchiou/Beyond-deterministic-translation-for-UDA
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6.1 Introduction

Unsupervised domain adaptation aims at accommodating the differing statistics be-

tween a ‘source’ and a ‘target’ domain, where the source domain comes with input-

label pairs for a task, while the target domain only contains input samples. Success-

fully solving this problem can allow us for instance to exploit synthetically gener-

ated datasets that come with rich ground-truth to train models that can perform well

in real images with different appearance properties. Translation-based approaches

[15, 16, 157, 7, 158] rely on establishing a transformation between the two domains

(often referred to as ‘pixel space alignment’) that bridges the difference in their

statistics while preserving the semantics of the translated samples. This translation

can then be used as a mechanism for generating supervision in the ‘target’ domain

based on ground-truth originally available in a ‘source’ domain.

In this work we address a major shortcoming of this approach - namely the

assumption that this translation is a deterministic function, mapping a single source

to a single target image. Recent works on the closely related problem of unsuper-

vised image translation [143, 159, 144, 142] have highlighted that this is a strong

assumption and is frequently violated in practice. For instance a nighttime scene

can have multiple daytime counterparts where originally invisible structures are re-

vealed by the sun and also illuminated from different directions during the day.

To mitigate this problem these techniques introduce methods for multimodal, or

stochastic translation, that allows an image from one domain to be associated with

a whole distribution of images in another.

Firstly, as in Chapter 4, 5, we use stochastic translation [143, 159, 144, 142]

across the source and target domains. We show that allowing for stochastic transla-

tions yields clear improvements over the deterministic CycleGAN-based baseline,

as well as all published pixel space alignment-based techniques. We attribute this

to the ability of the multimodal translation to generate more diverse and sharper

samples, that provide better training signals to the target-domain network.

Secondly, we exploit the ability to sample multiple translations for a given

image in order to obtain better pseudo-labels for the unlabelled target images: we
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generate multiple translations of every target image into the source domain, label

each according to a source-domain CNN, and average the resulting predictions to

form a reliable estimate of the class probability. This is used as supervision for

target-domain networks, and is shown to be increasingly useful as the number of

averaged samples per image grows.

Thirdly, we modify the variance of the latent style code in order to train and

ensemble complementary target-domain networks, each of which is adapted to han-

dle a different degree of appearance variability. The results of ensembling these

networks on the target data are then used to train a single target-domain network

that outperforms all methods that also rely on ensembling-based supervision in the

target domain.

We show that each of our proposed contributions yields additional improve-

ments over strong recent baselines, leading to state-of-the-art UDA results on two

challenging semantic segmentation benchmarks.

6.2 Related work

UDA approaches aim at learning domain invariant representations by aligning

the distributions of the two domains at feature/output level [160, 161, 162, 163,

164, 165, 166] or at image level [15, 16, 7]. Based on the observation that the

source and the target domain share a similar semantic layout, [160, 156] rely

on adversarial training to align the raw output and entropy distributions respec-

tively. However, such a global alignment does not guarantee that individual tar-

get samples are correctly classified. Category-based feature alignment methods

[167, 168, 169, 170, 161, 162] attempt to address this problem by mapping target-

domain features closer to the corresponding source-domain features.

Image-level UDA methods aim at aligning the two domain at the raw pixel

space. [15, 16, 157, 7] rely on CycleGAN [139] to translate source domain images

to the style of the target domain. Two recent works [171, 163] bypass the need for

training an image translation network by relying on simple Fourier transform and

global photometric alignment respectively.
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Complementary to the idea of translation is the use of self-training [172, 173,

174, 175] which has been originally used in semi-supervised learning. Self-training

iteratively generates pseudo-labels for the target domain based on confident predic-

tions and uses those to supervise the model, implicitly encouraging category-based

feature alignment between the source and the target domain. Another direction

pursued in [176, 177] is to leverage the unlabeled target data by using consistency

regularization to make the model predictions invariant to perturbations imposed in

the input images.

Two recent works [16, 7] that rely on both image-level alignment and self-

training are more closely related to our work. [16] relies on CycleGan to translate

source images to the style of the target domain. They train the image translation

network and the segmentation network alternatively and introduce a perceptual su-

pervision based on the segmentation network to enforce semantic consistency dur-

ing translation. They also generate pseudo-labels for the target data based on high

confident predictions of the target network and use those to supervise the target net-

work. [7] improves upon [16] by replacing the single-domain perceptual supervision

with a cross-domain perceptual supervision using two segmentation networks oper-

ating in the source and the target domain respectively. In addition, they rely on both

the source and the target networks to generate pseudo labels for the target data. Sim-

ilar to these works we rely on image-to-image translation to translate source images

to the style of the target domain, but we go beyond their one-to-one mapping ap-

proach which allows us to leverage both accurate translation and data augmentation

for appearance variability. In addition, as in [7] we use source and target networks

to generate pseudo-labels, but we exploit stochasticity in the translation to generate

more robust pseudo-labels that allow us to train accurate target-domain networks.

6.3 Methods

We start in Sec. 6.3.1 by introducing the background of using translation in UDA,

and then introduce our technical contributions from Sec. 6.3.2 onwards. Our pre-

sentation gradually introduces different components, loss terms, and processes used
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in UDA, and we summarize how everything is pieced together in Sec. 6.3.5.

6.3.1 Domain translation and UDA

In UDA we consider a source dataset with paired image-label data: S =

{(xi
s,y

i
s)}, i ∈ [1,S] and a target dataset comprising only image data T = {xi

t}, i ∈

[1,T ]. Our task is to learn a segmentation system that provides accurate predictions

in the target domain; we assume a substantial domain gap, precluding the naive

approach of training a network on S and then deploying it in the target domain.

Output-space alignment UDA approaches [160] train a single segmentation

network, F on both the source and the target images, using a cross-entropy loss

in the source domain and an adversarial loss in the target domain to statistically

align the predictions on target images to the distribution of source predictions. This

results in a training objective of the following form:

L(F) = ∑
(x,y)∈S

Lce(F(x),y)+ ∑
x∈T

Ladv(F(x)), (6.1)

where F(x) the softmax output.

In [156] entropy-based adversarial training is used to align the target entropy

distribution to the source entropy distribution instead of aligning the raw predic-

tions, resulting in the following objective:

L(F) = ∑
(x,y)∈S

Lce(F(x),y)+ ∑
x∈T

Ladv(E(F(x))), (6.2)

where E(F(x)) =−F(x) log(F(x)) is the weighed self-information.

Given that the network provides low-entropy predictions on source images,

adversarial entropy minimization promotes low-entropy predictions in the target

domain. The entropy-based objective forces the target points to be classified confi-

dently, and aims at reducing misclassifications by aligning the decision boundaries

of F with low-density areas of the target domain - reflecting a desired property un-

der the cluster assumption [178]. Still, having a single network F that successfully

operates in both domains can be challenging due to the broader intra-class variabil-
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ity caused by the domain gap.

Pixel-space alignment approaches try to mitigate this problem by establishing a

relation between the distributions of the source and target domain images and using

that to supervise a network that only operates with target-domain images. In its

simplest form, adopted also in [179, 15, 180, 16, 157] this relation is a deterministic

translation function T that maps source images to the target domain, resulting in the

following objective:

L(Ft)= ∑
(x,y)∈S

Lce(Ft(T[x]),y)+ ∑
x∈T

Ladv(E(Ft(x))), (6.3)

where the difference with respect to Eq. 6.2 is that the translated version of x, T[x]

is passed to the target-domain segmentation network, Ft . A straightforward way of

obtaining such a translation function is through unsupervised translation between

the two domains [139]; more sophisticated approaches [15, 16, 157] train the trans-

lation network in tandem with the UDA task, using for instance semantic losses

to ensure the semantics of the source domains are preserved during cyclic transla-

tion. Other methods that implicitly use translation include [171], where a Fourier

domain-based approach is used to align the two domains, effectively bypassing the

need for a pixel-level translation network.

This approach creates a target-adapted variant of the source-domain dataset,

allowing us to train a single network that is tuned exclusively to the statistics of

the target domain. This reduces the intra-class variance and puts less strain on the

segmentation network, but relies on the strong assumption that such a deterministic

translation function exists. In this work we relax this assumption and work with

a distribution on translated images. This better reflects most UDA scenarios and

provides us with novel and simple tools to improve UDA performance, as described

below.

6.3.2 Stochastic translation and UDA

We propose to replace the determinstic translation function T[x], with a distribution

over images given by T[x,v],v ∼ N (0,I), where v is a random vector sampled
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Figure 6.1: Unsupervised Domain Adaptation (UDA) with stochastic translation: we rely
on a content-style separation network to associate a synthetic image from the
GTA5 dataset (source) with a distribution of image translations to the target do-
main. These translations preserve the content signal and adopt the appearance
properties of the Cityscapes dataset (target) through randomly sampled style
codes. We use the resulting images to train a target-domain network tasked
with predicting the labels of the respective source-domain image, irrespective
of the style variation. Stochasticity in UDA allows the translation networks to
generate multiple, sharp outputs that better capture the diversity of the scenes
in the target domain, and train the target-domain network with a more repre-
sentative set of images.

from a normal distribution with zero mean and unit covariance [143]. For instance

when translating a nighttime scene into its daytime scene, the random argument can

reflect the (unpredictable) position of the sun, clouds or obscured objects. For the

synthetic-to-real case that we handle in our experiments we can see from Fig. 6.1

that the translation network can indeed generate scenes illuminated differently as

well as different cloud patterns, allowing us to capture more faithfully the range of

scenes encountered in the target domain. We note that T remains deterministic and

can be expressed by a neural network, but has a random argument which results in

a distribution on translated images.

This change is reflected in the UDA training objective by replacing the loss of

the translated image with the expected loss of the translated image:

L(Ft) = ∑
(x,y)∈S

Ev [Lce(Ft(T[x,v]),y)]+ ∑
x∈T

Ladv(E(Ft(x))), (6.4)

where the expectation is taken with respect to the random vector v ∼N (0,I), driv-

ing the stochastic translation. We note that during training we create minibatches

by first sampling images from S and then sampling v once per image, effectively
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replacing the integration in the expectation with a Monte Carlo approximation.

Our stochastic translation network relies on MUNIT [143]: we start from re-

constructing images in each domain through content and style encodings, where

content is fed to the first layer of a generator whose subsequent layers are modulated

by style-driven Adaptive Instance Normalization [151] - this amounts to minimizing

the following domain-specific autoencoding objectives:

Ls = ∑
x∈S

∥x−Gs(Cs(x),Ss(x))∥,

Lt = ∑
x∈T

∥x−Gt(Ct(x),St(x))∥,

where Cs,Ss,Gs are the content-encoder, style-encoder and generator networks for

the source domain s respectively, while Ct ,St ,Gt are those of the target domain t.

The basic assumption is that the commonalities between two domains are cap-

tured by the shared content space, allowing us to pass content from the source image

to its target counterparts, as also shown in Fig. 6.1. The uncertainty in the translation

is captured by a domain-specific style encoding that is inherently uncertain given

the source image.

This results in the following stochastic translation function from source to tar-

get:

T[x,v] .= Gt(Cs(x),v), v ∼N (0,I), x ∈ S,

where we encode the content of the source image through Cs(x) and then pass it

to the target-domain generator Gt that is driven by a random style code v. A simi-

lar translation is established between the target and source domains, and adversarial

losses on both domains ensure that the resulting translations appear as realistic sam-

ples of the respective domains.

The alignment of the shared latent space for content is enforced by a cycle

translation objective:

Lc
cycle = ∥Ct(Gt(Cs(x),v))−Cs(x)∥2, x ∈ S, v ∼N (0,I),
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Source Target translations

Figure 6.2: Diverse translations of images from the GTA source dataset to the Cityscapes
target dataset: we observe that even though the content and pixel semantics
stay intact, we generate diverse variants of the same scene, effectively capturing
more faithfully the data distribution in the target domain.

ensuring that regardless of the random style code, we can recover the original con-

tent Cs(x) by encoding the translated image through the respective content encoder.

A similar loss is used for the style code:

Ls
cycle = ∥St(Gt(Cs(x),v))−v∥2, x ∈ S, v ∼N (0,I).

We preserve semantic information during translation by imposing a semantic

consistency constraint to our stochastic translation network using a fixed segmenta-

tion network F pretrained on source and target data using Eq. 6.2. Given an image x

we obtain the predicted labels before translation as p = argmax(F(x)) and enforce

semantic consistency during translation using an objective of the following form:

Lsem = Lce(F(T[x,v]), p). (6.5)

The losses are applied to translations to both domains since unlike UDA, there is no

special ‘source’ and ‘target’ domain.

We argue that stochastic translation provides us with a natural mechanism to
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handle UDA problems with large domain gaps where things may unavoidably get

‘lost in translation’; the content cycle constraint can help preserve semantics during

translation, while the random style allows the translated image appearance to vary

freely, avoiding a deterministic and blunt translation.

This is demonstrated in Fig. 6.2, where we show some of the samples obtained

by our method: we observe that our method generates sharp samples of high vari-

ability and noticeable diversity. As we show in the experimental results section, this

results in substantially improved UDA accuracy. We also note that our approach

includes deterministic translation as a special case, since the network can always

learn to ignore the source of stochasticity if that is not useful - hence deterministic

translation-based results provide effectively a lower bound on what our method can

deliver.

6.3.3 Stochastic translation and pseudo-labelling

Having shown how stochastic translation from the source to the target domain can

be integrated in the basic formulation of UDA, we now turn to exploiting stochastic

translation from the target to the source domain, which is freely provided by the

cycle-consistent formulation of [143].

In particular we consider a complementary segmentation network, Fs, that op-

erates in the source domain and can be directly supervised from the labeled source

dataset based on a cross-entropy objective:

L(Fs) = ∑
(x,y)∈S

Lce(Fs(x),y). (6.6)

This network can provide labels for the target-domain images, once these are trans-

lated from the target to the source domain; these pseudo-labels of the target data

can in turn be used to supervise the target-domain network through a cross-entropy

loss.

In the case of deterministic translation pseudo-labels would be obtained by the

following expression:

ŷ(x) = Fs(I[x]), x ∈ T , (6.7)
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Figure 6.3: Stochastic translation for pseudo-labeling: the target image (left) results in mul-
tiple target-domain translations (middle) which are processed by the source-
domain network, Fs and averaged to produce pseudo-labels for the target im-
age; the latter are used to supervise the target-domain network Ft through a
cross-entropy loss.

where I is the inverse transform from the target to the source domain, and ŷ indicates

the pixel-level posterior distribution on labels.

In our case however we have a whole distribution on translations for every

image in T . We realise that we can exploit multiple samples to obtain a better

estimate of the pseudo-labels. In particular we form the following Monte Carlo

estimate of pseudo-labels:

ŷ(x) = Ev [Fs(I[x,v])] , x ∈ T ,v ∼N (0,I)

≃ 1
K

K

∑
k=1

Fs(I[x,vk]),

where vk are independently sampled from the normal distribution. As shown in

Fig. 6.3 the label maps obtained through this process tend to have fewer errors and

be more confident, since averaging the results obtained by different translations can

be expected to cancel out the fluctuation of the predictions around their ground-truth

value.

Our experimental results indicate that using K = 10 yields substantially better

results than using a single sample. We also note that pseudo-label generation is a

one-off process done prior to training the target-domain network, and consequently

the number of samples, K, does not affect training time.
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6.3.4 Stochasticity-driven training of diverse network ensem-

bles

An experimental approach that has been recently adopted by several recent

works [171, 7] consists in ensembling different networks trained for UDA, and

using their predictions as an enhanced pseudo-labeling mechanism. For instance

in [171] this was accomplished by modifying one of the main design parameters

of their phase-driven translation algorithm. A main recipe for successful network

ensembling is to generate complementary networks, so that they make uncorrelated

errors, which hopefully cancel out.

Based on the understanding that the stochasticity driving our translation mech-

anism can be seen as implementing appearance-level dataset augmentation in the

target domain, we introduce a simple twist to the translation mechanism that allows

us to train networks that operate in different regimes. For this we scale by a con-

stant the variance of the normal distribution used to sample the random style code

- this amounts to generating more diverse translations than those suggested by the

image statistics of the target domain. On one hand this trains a target network that

can handle a broader range of inputs, but on the other hand it may waste capacity to

handle unrepresentative samples.

We train two such networks, one with the variance left intact and the other with

the variance scaled by 10, and average their predictions with those of the source-

domain network described in the previous subsection as shown in Fig. 6.4. Our

results show that this triplet of networks yields a clear boost over the baseline oper-

ating with a single network.

Further following common practice in UDA we use the resulting ensembling

results as pseudo-labels in the next round of training - this yields further improve-

ments, as documented in detail in the experimental results section.

6.3.5 Training objectives

Having described the components of our method, we now summarize the losses

used for training our networks.
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Figure 6.4: Ensembling of a triplet of networks — two target networks trained with differ-
ent degrees of stochasticity in the translation (σ2) and a source network — for
robust pseudo-labeling.

Firstly, we train our stochastic translation network using the process of [143]

and introduce a semantic consistency loss as in [15] to preserve semantics during

translation.

For the target-domain network the basic objective has already been provided

in Eq. 6.4, where Lce is the standard cross-entropy loss and Ladv is the adversarial

entropy minimization objective [156]. A more sophisticated objective can train

this network with pseudo-labels, obtained either from a source-domain network as

described in Sec. 6.3.3 or from the ensembling of multiple networks, as described

in Sec. 6.3.4. In that case the objective becomes:

L(Ft) = ∑
(x,y)∈S

Ev [Lce(Ft(T[x,v]),y)]+

∑
x∈T

Ladv(E(Ft(x)))+ ∑
x∈T

Lθ
ce(Ft(x),argmax(ŷ)),

(6.8)

where the cross entropy loss Lθ
ce(Ft(x)) is only applied on pseudo-labels where

the dominant class has a score above a certain threshold θ . Similar to [172] we

use class-wise confidence thresholds to address the inter-class imbalance and avoid

ignoring hard classes. Specifically, for each class c the threshold θc equals to the

probability ranked at r ∗Nc, where Nc is the number of pixels predicted to belong

in class c and r is the proportion of pseudo-labels we want retain. We provide more

details in the Appendix (Sec. 6.6).

Finally, for the source-domain network, we observed experimentally that we
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obtain better results by adding an entropy-based regularization to the output of Fs

when it is driven by translated target images - this ensures that the source network

will correctly classify the source images, while placing its boundaries far from areas

populated by synthetic source-domain images. The objective function for the source

network becomes:

L(Fs) = ∑
(x,y)∈S

Lce(Fs(x),y)+ ∑
x∈T

Ev [Ladv(Fs(I[x,v]))] , (6.9)

forming the source-domain counterpart to the objective encountered in Eq. 6.4.

When pseudolabels are available for the target domain the objective function be-

comes:
L(Fs) = ∑

(x,y)∈S
Lce(Fs(x),y)+ ∑

x∈T
Ev [Ladv(Fs(I[x,v]))]

+ ∑
x∈T

Lθ
ce(Fs(I[x,v]),argmax(ŷ)),

(6.10)

forming the source-domain counterpart of the objective in Eq. 6.8.

6.4 Experiments
We evaluate the proposed approach on two common UDA benchmarks for se-

mantic segmentation. In particular we use the synthetic dataset GTA5 [23]

or SYNTHIA [24] with ground-truth annotations as the source domain and the

Cityscapes [25] dataset as the target domain with no available annotations during

training. We evaluate the performance using the mean intersection over union score

(mIoU) across semantic classes on the Cityscapes validation set.

6.4.1 Datasets

Cityscapes [25] is a real-world dataset of diverse urban street scenes collected from

different cities. We use 2975 training images and 500 validation images with res-

olution 2048× 1024. We resize the images to 1024× 512. We train the image

translation network and the segmentation network using the training set and report

the results on the validation set.

GTA5 [23] consists of 24966 synthesized images captured from a video game. The
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original images have resolution 1914×1052 and they are resized to 1024×512 for

training. GTA5 provides pixel-level semantic annotations of 33 classes. Similar to

other studies, we use the 19 common classes between GTA5 and Cityscapes.

SYNTHIA [24] consists of synthesized images rendered from a virtual city. We use

SYNTHIA-RAND-CITYSCAPES subset which has 9400 annotated images with

resolution 1280× 760. We use the 16 common classes between SYNTHIA and

Cityscapes for training and we evaluate the performance on 16 classes and a subset

of 13 classes following previous studies [16, 156, 171, 157].

6.4.2 Implementation details

Stochastic translation network: We rely on MUNIT [143] to establish a stochastic

translation across the source and target domain. Images from the source and the

target domain are resized to 1024× 512 and cropped to 400× 400. We train the

network for 600000 iterations with batch size 1 and a learning rate starting 0.0001

and decreasing by half every 100000 iterations.

Semantic segmentation network We train two different architectures, i.e.,

DeepLabV2 [181] with ResNet101 [182] backbone, and FCN-8s [119] with VGG-

16 [128] backbone. We train DeepLabV2 with ResNet101 using Stochastic Gra-

dient Descent optimizer with initial learning rate 2.5× 10−4, momentum 0.9 and

weight decay 1×10−4. The learning rate is adjusted according to the poly learning

rate scheduler with a power of 0.9. We train FCN-8s with VGG-16 using ADAM

with initial learning rate 1× 10−5 and momentum 0.9 and 0.99. The learning is

decreased by a factor γ = 0.1 every 50000 iterations. We use the same discriminator

for both the DeepLabV2 and FCN-8s. The discriminator used to adapt the entropy

maps is similar to [183]. It has 4 convolutional layers, each followed by a leaky-

ReLU layer with negative slope of 0.2. The last layer is a binary classification layer

classifying the inputs either as source or target.

6.4.3 Results

Stochastic translation: We start by examining in how stochastic translation im-

proves performance compared to deterministic translation. In all cases the segmen-
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Method Output space Pixel space mIoU
ADVENT [156] ✓ 43.8

ADVENT ∗ ✓ 42.9
ADVENT ∗+
CycleGAN∗ ✓ ✓ 45.1

Ours ✓ ✓ 46.2
Ours w/ Lsem ✓ ✓ 46.6

Table 6.1: GTA to Cityscapes UDA using stochastic translation: We train ADVENT us-
ing synthetic images obtained from deterministic translation (CycleGAN) and
stochastic translation (Ours). We observe a clear improvement thanks to pixel-
space alignment based on stochastic translation. ∗ denotes our retrained models.

tation model is DeepLabV2 [181] and the source and target datasets are GTA5 [23]

and Cityscapes [25] respectively.

In Table 6.1 we start with an apples-to-apples comparison that builds on di-

rectly on the ADVENT baseline [156]; the first two rows compare the originally

published and our reproduced numbers respectively. The third row shows the sub-

stantial improvement attained by training the system of ADVENT using translated

images - which amount to training with Eq. 6.3. The forth row reports our stochastic

translation-based result, amounting to training with Eq. 6.4. We observe a substan-

tial improvement, that can be attributed solely to the stochasticity of the translation.

The last row shows that imposing a semantic consistency constraint as described

in Eq. 6.5 further improves the performance.

Pseudo labeling: As discussed in Section 6.3.3 we translate from the target to

the source domain and generate pseudo labels for the target data. The first three

rows in Table 6.2 show the impact of the number of samples K, on performance.

Averaging the predictions of multiple translations for a given target image improves

the performance and allows to obtain better pseudo labels for the target domain. Our

results show that using 10 samples yields better performance. In rows 4, 5 of the

same table we report the performance obtained from the two target networks trained

with different degrees of stochasticity in the translation as described in Sec. 6.3.4.

Averaging the prediction of the three networks gives the best results, indicating the
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Fs, K=1 Fs, K=5 Fs, K=10 Ft ,
σ2 = 1

Ft ,
σ2 = 10

mIoU

✓ 43.3
✓ 44.0

✓ 44.4
✓ 46.6

✓ 46.1
✓ ✓ 47.7
✓ ✓ 47.6

✓ ✓ 47.7
✓ ✓ ✓ 48.2

Table 6.2: Performance of different models and their combinations. The first 3 rows show
the performance of the source network Fs when averaging the predictions of
multiple translations K, of a target image while rows 4, 5 show the performance
of the target networks Ft , trained with different degrees of stochasticity (σ2) in
the translation. Averaging the predictions of multiple translations and combining
the three models allows us to obtain better pseudo-labels for the target domain.

complementary of the model predictions. We also provide qualitative results in the

Appendix (Sec. 6.6).

Network ensembling: Table 6.3 shows the results obtained in three rounds of

pseudo-labeling and training, following the approach of [171, 16, 7]. In the first

round (R = 0) we train the target and source networks with Eq. 6.4 and Eq. 6.9 re-

spectively using the synthetic and real data and average the predictions of the three

models to generate pseudo-labels for the target data. In the second round (R=1) we

use the generated pseudo-labels as ground-truth labels to train the target and source

networks with Eq. 6.8 and Eq. 6.10 respectively. We observe that the pseudo-labels

obtained by ensembling improve the performance of each individual network, as

well as the ensemble obtained in the last round (R=2).

Benchmark results We use DeepLabV2 [181] with ResNet101 [182] back-

bone, and FCN-8s [119] with VGG-16 [128] for the segmentation and compare

with [160, 156, 16, 184, 171, 157, 174, 185, 186, 177, 7] which use exactly the

same experimental settings. We report both the results obtained using a single tar-

get network and the results obtained by ensembling. We provide qualitative results

in the
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Model mIoU
Fs (R=0) 44.4
Ft , σ2 = 1 (R=0) 46.6
Ft , σ2 = 10 (R=0) 46.1
Ens (R=0) 48.2
Fs (R=1) 49.1
Ft , σ2 = 1 (R=1) 50.1
Ft , σ2 = 10 (R=1) 50.9
Ens (R=1) 52.0
Fs (R=2) 51.3
Ft , σ2 = 1 (R=2) 53.0
Ft , σ2 = 10 (R=2) 52.9
Ens (R=2) 54.3

Table 6.3: Ablation study on GTA to Cityscapes. Averaging the predictions (Ens) of a
source network Fs, and two target networks Ft trained with different degrees of
stochasticity (σ2) in the translation allows to obtain robust pseudo-labels, while
using multiple rounds R of pseudo-labeling and training improves the overall
performance.
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VGG backbone

AdaptSegNet[160] 87.3 29.8 78.6 21.1 18.2 22.5 21.5 11.0 79.7 29.6 71.3 46.8 6.5 80.1 23.0 26.9 0.0 10.6 0.3 35.0
AdvEnt[156] 86.9 28.7 78.7 28.5 25.2 17.1 20.3 10.9 80.0 26.4 70.2 47.1 8.4 81.5 26.0 17.2 18.9 11.7 1.6 36.1

BDL [16] 89.2 40.9 81.2 29.1 19.2 14.2 29.0 19.6 83.7 35.9 80.7 54.7 23.3 82.7 25.8 28.0 2.3 25.7 19.9 41.3
LTIR [184] 92.5 54.5 83.9 34.5 25.5 31.0 30.4 18.0 84.1 39.6 83.9 53.6 19.3 81.7 21.1 13.6 17.7 12.3 6.5 42.3

FDA-MBT [171] 86.1 35.1 80.6 30.8 20.4 27.5 30.0 26.0 82.1 30.3 73.6 52.5 21.7 81.7 24.0 30.5 29.9 14.6 24.0 42.2
PCEDA [157] 90.7 49.8 81.9 23.4 18.5 37.3 35.5 34.3 82.9 36.5 75.8 61.8 12.4 83.2 19.2 26.1 4.0 14.3 21.8 42.6

DPL-Dual (Ensemble) [7] 89.2 44.0 83.5 35.0 24.7 27.8 38.3 25.3 84.2 39.5 81.6 54.7 25.8 83.3 29.3 49.0 5.2 30.2 32.6 46.5
Ours 91.1 43.2 84.1 34.6 25.5 25.8 33.7 31.3 84.7 44.9 83.1 55.3 23.5 81.6 23.1 34.3 6.3 32.7 34.8 46.0

Ours (Ensemble) 91.0 40.7 84.7 33.8 27.1 30.9 33.1 35.1 85.3 44.7 82.9 56.8 23.4 86.2 36.5 50.3 2.8 27.8 36.6 47.9
ResNet101 backbone

AdvEnt[156] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5
BDL [16] 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5

LTIR [184] 92.9 55.0 85.3 34.2 31.1 34.9 40.7 34.0 85.2 40.1 87.1 61.0 31.1 82.5 32.3 42.9 0.3 36.4 46.1 50.2
FDA-MBT [171] 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5

PCEDA [157] 91.0 49.2 85.6 37.2 29.7 33.7 38.1 39.2 85.4 35.4 85.1 61.1 32.8 84.1 45.6 46.9 0.0 34.2 44.5 50.5
TPLD [174] 94.2 60.5 82.8 36.6 16.6 39.3 29.0 25.5 85.6 44.9 84.4 60.6 27.4 84.1 37.0 47.0 31.2 36.1 50.3 51.2

Wang et al. [186] 90.5 38.7 86.5 41.1 32.9 40.5 48.2 42.1 86.5 36.8 84.2 64.5 38.1 87.2 34.8 50.4 0.2 41.8 54.6 52.6
PixMatch [177] 91.6 51.2 84.7 37.3 29.1 24.6 31.3 37.2 86.5 44.3 85.3 62.8 22.6 87.6 38.9 52.3 0.65 37.2 50.0 50.3

DPL-Dual (Ensemble) [7] 92.8 54.4 86.2 41.6 32.7 36.4 49.0 34.0 85.8 41.3 86.0 63.2 34.2 87.2 39.3 44.5 18.7 42.6 43.1 53.3
Ours 93.3 56.5 85.9 41.0 33.1 34.8 43.8 43.8 86.6 46.5 82.5 61.1 30.4 87.0 39.7 50.7 8.8 34.9 46.8 53.0

Ours (Ensemble) 93.4 55.8 86.4 44.4 36.1 34.6 45.0 39.8 86.9 48.0 84.4 61.7 30.9 87.7 44.9 55.9 11.1 38.4 45.4 54.3

Table 6.4: Quantitative comparison on GTA5→Cityscapes. We present per-class IoU and
mean IoU (mIoU) obtained using VGG and ResNet101 backbones.

The results for the GTA-to-Cityscapes benchmark are summarized in Ta-

ble 6.4. Our results show that our method achieves state-of-the-art performance

and outperforms previous methods. When compared with other approaches relying
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on both deterministic translation and multiple rounds of pseudo-labeling and train-

ing [16, 7, 171], our approach performs better while at the same time is simpler. In

particular, [16] and [7] train both the image translation and segmentation networks

multiple times and use complex warm-up stages [7]. On the other hand we train the

image translation network only once and use the same image translation network in

all rounds of pseudo-labeling and training.
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mIoU mIoU*
VGG backbone

AdvEnt[156] 67.9 29.4 71.9 6.3 0.3 19.9 0.6 2.6 74.9 74.9 35.4 9.6 67.8 21.4 4.1 15.5 31.4 36.6
BDL [16] 72.0 30.3 74.5 0.1 0.3 24.6 10.2 25.2 80.5 80.0 54.7 23.2 72.7 24.0 7.5 44.9 39.0 46.1

FDA-MBT [171] 84.2 35.1 78.0 6.1 0.4 27.0 8.5 22.1 77.2 79.6 55.5 19.9 74.8 24.9 14.3 40.7 40.5 47.3
PCEDA [157] 79.7 35.2 78.7 1.4 0.6 23.1 10.0 28.9 79.6 81.2 51.2 25.1 72.2 24.1 16.7 50.4 41.1 48.7

DPL-Dual (Ensemble) [7] 83.5 38.2 80.4 1.3 1.1 29.1 20.2 32.7 81.8 83.6 55.9 20.3 79.4 26.6 7.4 46.2 43.0 50.5
Ours 83.3 40.9 80.3 1.4 0.6 24.8 16.9 31.1 82.4 84.1 57.4 20.1 83.2 30.3 16.0 44.5 43.6 51.5

Ours (Ensemble) 88.7 41.6 80.3 1.0 0.7 23.6 14.3 33.1 81.9 81.1 57.2 21.1 84.1 33.4 19.1 44.3 44.1 52.3
ResNet101 backbone

AdvEnt[156] 85.6 42.2 79.7 - - - 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 - 48.0
LTIR [184] 92.6 53.2 79.2 - - - 1.6 7.5 78.6 84.4 52.6 20.0 82.1 34.8 14.6 39.4 - 49.3
BDL [16] 86.0 46.7 80.3 - - - 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 - 51.4

FDA-MBT [171] 79.3 35.0 73.2 - - - 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 - 52.5
PCEDA [157] 85.9 44.6 80.8 - - - 24.8 23.1 79.5 83.1 57.2 29.3 73.5 34.8 32.4 48.2 - 53.6
TPLD [174] 80.9 44.3 82.2 19.9 0.3 40.6 20.5 30.1 77.2 80.9 60.6 25.5 84.8 41.1 24.7 43.7 47.3 53.5

Wang et al. [186] 79.4 34.6 83.5 19.3 2.8 35.3 32.1 26.9 78.8 79.6 66.6 30.3 86.1 36.6 19.5 56.9 48.0 54.6
PixMatch [177] 92.5 54.6 79.8 4.7 0.08 24.1 22.8 17.8 79.4 76.5 60.8 24.7 85.7 33.5 26.4 54.4 46.1 54.5

DPL-Dual (Ensemble) [7] 87.5 45.7 82.8 13.3 0.6 33.2 22.0 20.1 83.1 86.0 56.6 21.9 83.1 40.3 29.8 45.7 47.0 54.2
Ours 85.8 41.7 82.4 7.6 1.9 33.2 26.5 18.4 83.3 86.5 62.0 29.7 83.9 52.1 34.6 51.4 48.8 56.8

Ours (Ensemble) 87.2 44.1 82.1 6.5 1.4 33.1 24.7 17.9 83.4 86.6 62.4 30.4 86.1 58.5 36.8 52.8 49.6 57.9

Table 6.5: Quantitative comparison on SYNTHIA→Cityscapes. We present per-class IoU
and mean IoU (mIoU) obtained using VGG and ResNet101 backbones. mIoU
and mIoU* are the mean IoU computed on the 16 classes and the 13 subclasses
respectively.

The results for the SYNTHIA-to-Cityscapes benchmark are reported in Ta-

ble 6.5. Following the evaluation protocol of previous studies [16, 157, 171, 156, 7]

we report the mIoU of our method on 13 and 16 classes. We observe that our method

outperforms previous state-of-the art methods by a large margin (+3.7 compared to

DPL[7]). We note here that the domain gap between SYNTHIA and Cityscapes

is much larger compared to the domain gap between GTA and Cityscapes. We at-

tribute the substantial improvements obtained by our method to the stochasticity in

the translation which allows us to better capture the range of scenes encountered in

the two domains and to generate sharp samples even in cases where there is a large

domain gap between the two domains.
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6.5 Conclusion
In this work we have introduced stochastic translation in the context of UDA for

semantic segmentation of urban scenes and showed that we can reap multiple ben-

efits by acknowledging that certain structures are ‘lost in translation’ across two

domains. The networks trained directly through stochastic translation clearly out-

performs all comparable counterparts, while we have also shown that we retain our

edge when combining our approach with more involved UDA approaches such as

pseudo-labeling and ensembling.

6.6 Appendix
We report results from additional ablation studies and class-wise IoU for ablation

studies already presented in Sec. 6.4.3. We report results on GTA-to-Cityscapes

using DeepLab-V2 with ResNet-101. We also report qualitative results.

6.6.1 Quantitative results

Training objective of the source domain network.

As we mentioned in Sec. 6.3.5, for the source domain network we observed ex-

perimentally that we obtained better results by adding an entropy-based adversarial

loss Ladv, to the output of source-domain network Fs when it is driven by translated

target images. In Table 6.6 we report results obtained with and without the entropy-

based adversarial loss (Eq. 6.9). Adding the entropy-based regularization improves

performance for most classes.
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LCE 90.2 38.0 81.2 29.1 16.2 24.4 23.7 15.5 84.0 38.8 78.5 56.9 24.0 85.0 36.4 47.0 0.3 31.8 26.8 43.6

LCE +Ladv 90.5 39.4 82.0 29.0 21.4 23.6 28.6 17.8 83.9 38.2 79.8 56.9 26.0 85.1 32.2 44.1 3.8 31.5 30.1 44.4

Table 6.6: Better performance is achieved by adding an entropy-based regularization Ladv
to the output of source-domain network Fs when it is driven by translated target
images.

Selection of r for pseudolabel generation.

In Table 6.7 and Table 6.8 we provide the per-class IoU and mIoU obtained on the

validation set for different values of r in the first (R=0) and second (R=1) round
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of pseudo-labeling respectively. In both rounds the best performance is achieved

for r = 0.6. In the second round of pseudolabeling the networks provide more

confident predictions since the performance remains the same for almost all classes

when r ≤ 0.5.

r ro
ad

si
de

w
al

k

bu
ild

in
g

w
al

l

fe
nc

e

po
le

lig
ht

si
gn

ve
ge

ta
tio

n

te
rr

ai
n

sk
y

pe
rs

on

rid
er

ca
r

tru
ck

bu
s

tra
in

m
ot

oc
yc

le

bi
cy

cl
e

mIoU
1.0 92.1 47.8 84.3 36.5 27.9 31.5 36.6 24.5 85.4 41.2 81.6 61.4 30.1 86.3 37.6 47.3 1.3 28.7 32.7 48.2
0.8 97.4 69.8 93.4. 52.0 42.5 47.1 55.2 37.7 94.2 53.5 91.1 78.2 40.2 94.4 47.4 55.7 2.2 40.9 55.4 60.4
0.7 98.2 72.1 95.9. 63.4. 51.5 55.2 64.0 42.5 96.5 65.0 93.7 86.9 51.7 96.4 57.0 61.2 2.7 53.1 65.8 67.0
0.6 98.5 70.2 96.3 73.4 57.5 54.1 58.7 33.3 97.2 77.4 93.8 90.8 60.3 97.5 65.5 69.6 2.5 65.8 71.9 70.2
0.5 98.6 59.4 96.5 79.0 55.2 44.6 54.3 20.7 97.6 81.4 93.8 92.2 61.0 97.9 70.6 74.1 1.3 73.3 70.3 69.6
0.4 98.6 50.1 96.6 76.5 42.2 44.6 54.6 20.6 97.7 82.3 93.8 92.3 61.1 97.9 70.6 74.1 0.5 73.4 70.5 68.3
0.3 98.6 50.1 96.6 76.6 38.3 44.7 54.6 20.6 97.7 82.3 93.8 92.3 61.1 97.9 70.6 74.1 0.2 73.4 70.5 68.1

Table 6.7: Per-class IoU and mean (mIoU) obtained using different values of r for class-
wise confidence threshold selection in the first round (R=0) of pseudolabeling.
We observe that r = 0.6 gives the best results.
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1.0 93.0 53.3 85.8 41.2 33.1 33.4 39.1 29.7 86.4 45.4 84.5 60.0 29.3 86.9 45.8 57.7 2.7 34.6 45.8 52.0
0.8 96.8 67.4 93.6 57.3 45.2 46.7 54.2 41.9 94.2 59.2 92.4 74.8 37.1 94.4 57.1 71.3 4.6 49.2 60.8 63.1
0.7 97.2 67.3 94.2 64.5 49.4 49.0 51.9 37.1 95.3 67.6 92.5 80.8 46.3 95.9 68.6 77.9 5.4 59.7 70.5 66.9
0.6 97.3 65.4 94.5 67.8 51.3 44.0 48.5 36.0 95.7 71.9 92.5 84.4 52.5 96.9 85.3 81.2 4.9 67.9 74.7 69.1
0.5 97.3 65.4 94.5 68.1 49.3 42.8 48.6 36.3 95.7 72.2 92.5 84.7 52.7 97.0 87.5 81.6 3.0 68.6 75.1 69.1
0.4 97.3 65.4 94.5 68.1 49.3 42.8 48.6 36.3 95.7 72.2 92.5 84.7 52.7 97.0 87.5 81.6 1.3 68.6 75.1 69.0
0.3 97.3 65.4 94.5 68.1 49.3 42.8 48.6 36.3 95.7 72.2 92.5 84.7 52.7 97.0 87.5 81.6 0.4 68.6 75.1 69.0

Table 6.8: Per-class IoU and mean (mIoU) obtained using different values of r for class-
wise confidence threshold selection in the second round (R=1) of pseudolabel-
ing. We observe that r = 0.6 gives the best results.

Class-wise IoU for ablation studies reported in Sec. 6.4.3.

In Table 6.9 we report the per-class IoU obtained from deterministic and stochastic

translation (mIoU results only are reported in Table 6.1). In Table 6.10 we report

the per-class IoU obtained from multiple rounds R of pseudo-labeling and training

(mIoU only results are provided in Table 6.3). Multiple rounds of pseudolabeling

and training yield improved performance.

6.6.2 Qualitative results

Diverse translation obtained using stochastic translation.

Fig. 6.5 shows diverse translations of images from the SYNTHIA source dataset to
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ADVENT 89.9 36.5 81.6 29.2 25.2 28.5 32.3 22.4 83.9 34.0 77.1 57.4 27.9 83.7 29.4 39.1 1.5 28.4 23.3 43.8

ADVENT ∗ 87.2 38.5 78.2 25.9 24.6 30.4 36.3 21.7 84.0 28.7 76.7 60.1 28.8 80.0 28.0 45.2 0.7 19.7 19.9 42.9
ADVENT ∗+
CycleGAN∗ 91.9 51.5 83.1 30.8 23.6 32.0 32.1 24.3 83.8 38.5 82.3 58.7 28.5 84.1 33.3 35.9 0.6 21.7 20.0 45.1

Ours 90.2 37.6 84.1 33.0 25.1 30.1 36.8 28.4 83.8 36.1 82.2 58.1 29.6 84.6 34.4 45.4 1.0 26.2 30.8 46.2
Ours w/ Lsem 92.1 49.9 83.5 29.1 24.7 30.3 38.3 27.2 84.8 34.4 81.1 60.4 28.1 85.2 33.0 45.7 2.5 23.8 30.4 46.6

Table 6.9: GTA to Cityscapes UDA using stochastic translation: We train ADVENT us-
ing synthetic images obtained from deterministic translation (CycleGAN) and
stochastic translation (Ours). We observe a clear improvement thanks to pixel-
space alignment based on stochastic translation. ∗ denotes our retrained models.
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source (R=0) 90.5 39.4 82.0 29.0 21.4 23.6 28.6 17.8 83.9 38.2 79.8 56.9 26.0 85.1 32.2 44.1 3.8 31.5 30.1 44.4

target, σ2 = 1 (R=0) 92.1 49.9 83.5 29.1 24.7 30.3 38.3 27.2 84.8 34.4 81.1 60.4 28.1 85.2 33.0 45.7 2.5 23.8 30.4 46.6
target, σ2 = 10 (R=0) 90.9 43.0 83.4 30.6 29.3 30.6 34.1 27.1 84.4 36.2 79.9 60.6 29.5 84.5 32.5 40.3 3.1 29.2 26.4 46.1

Ens (R=0) 92.1 47.8 84.3 36.5 27.9 31.5 36.6 24.5 85.4 41.2 81.6 61.4 30.1 86.3 37.6 47.3 1.3 28.7 32.7 48.2
source (R=1) 92.1 48.4 84.3 36.4 29.5 30.5 35.9 26.5 85.4 42.9 82.1 59.8 29.6 85.5 38.2 52.9 3.4 32.7 37.3 49.1

target, σ2 = 1 (R=1) 92.1 47.5 85.1 38.3 29.4 32.9 35.4 32.1 85.9 46.8 81.7 60.5 30.4 86.6 35.7 51.1 4.4 34.9 41.0 50.1
target, σ2 = 10 (R=1) 92.9 55.2 85.1 38.1 30.6 32.8 39.8 34.8 85.9 42.2 84.0 59.0 26.1 85.4 47.9 46.3 10.1 28.4 42.8 50.9

Ens (R=1) 93.0 53.3 85.8 41.2 33.1 33.4 39.1 29.7 86.4 45.4 84.5 60.0 29.3 86.9 45.8 57.7 2.7 34.6 45.8 52.0
source (R=2) 92.3 48.2 85.1 40.7 34.3 29.8 38.5 28.2 86.5 46.7 83.3 60.9 30.2 86.9 41.3 53.1 10.4 38.4 40.5 51.3

target, σ2 = 1 (R=2) 93.3 56.5 85.9 41.0 33.1 34.8 43.8 43.8 86.6 46.5 82.5 61.1 30.4 87.0 39.7 50.7 8.8 34.9 46.8 53.0
target, σ2 = 10 (R=2) 93.4 56.3 85.6 40.6 33.5 35.9 43.5 41.1 85.7 43.8 84.1 60.6 29.2 87.2 44.2 53.7 13.7 33.8 39.2 52.8

Ens (R=2) 93.4 55.8 86.4 44.4 36.1 34.6 45.0 39.8 86.9 48.0 84.4 61.7 30.9 87.7 44.9 55.9 11.1 38.4 45.4 54.3

Table 6.10: Ablation study on GTA→Cityscapes. Averaging the predictions (Ens) of a
source network Fs, and two target networks Ft trained with different degrees of
stochasticity (σ2) in the translation allows to obtain robust pseudo-labels, while
using multiple rounds R of pseudo-labeling and training improves the overall
performance.

the Cityscapes target dataset. Fig. 6.6 and Fig. 6.7 show diverse translations of im-

ages from the Cityscapes target dataset to the SYNTHIA and GTA source datasets

respectively. We observe that stochastic translation generates diverse samples that

capture more faithfully the data distribution of the source domain and preserve the

content of the original image allowing us to obtain more robust pseudolabels for the

target data.

Stochastic versus deterministic translation.

Fig. 6.8 shows stochastic and deterministic translation of images from the GTA

source dataset to the Cityscapes target dataset while Fig. 6.9 shows stochastic

and deterministic translation of images from the SYNTHIA source dataset to the

Cityscapes target dataset. Fig. 6.10 shows stochastic and deterministic translation of

images from the Cityscapes target dataset to the GTA source dataset while Fig. 6.11
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Figure 6.5: Diverse translations of images from the SYNTHIA source dataset to the
Cityscapes target dataset: we observe that even though the content and pixel
semantics stay intact, we generate diverse variants of the same scene, effec-
tively capturing more faithfully the data distribution in the target domain.

Figure 6.6: Diverse translations of images from the Cityscapes target dataset to the SYN-
THIA source dataset: we observe that even though the content and pixel se-
mantics stay intact, we generate diverse variants of the same scene, effectively
capturing more faithfully the data distribution of the source domain. This al-
lows us to generate more robust pseudolabels.

shows stochastic and deterministic translation of images from the Cityscapes tar-

get dataset to the SYNTHIA source dataset. We observe that stochastic translation
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Figure 6.7: Diverse translations of images from the Cityscapes target dataset to the GTA
source dataset: we observe that even though the content and pixel semantics
stay intact, we generate diverse variants of the same scene, effectively capturing
more faithfully the data distribution of the source domain. This allows us to
generate more robust pseudolabels.

generates sharp samples of noticeable diversity compared to the deterministic trans-

lation that generates a single output.

Figure 6.8: Stochastic and deterministic translation of images from the GTA source dataset
to the Cityscapes target dataset.

Multiple rounds of pseudolabeling.

Fig. 6.12 shows the pseudo-labels obtained from the first (R=0) and second (R=1)

round of pseudolabeling. We observe that the pseudolabels we obtained in the sec-
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Figure 6.9: Stochastic and deterministic translation of images from the SYNTHIA source
dataset to the Cityscapes target dataset.

Figure 6.10: Stochastic and deterministic translation of images from the Cityscapes target
dataset to the GTA source dataset.

ond round are more accurate allowing us to train more accurate models in the last

round of training.

Robust pseudolabeling through ensembling.

Fig. 6.13 shows the pseudo-labels obtained by averaging the predictions of two

target networks Ft,σ2=1, Ft,σ2=10 and a one source network Fs. Averaging the pre-

dictions allows us to generate more accurate pseudolabels.

Ensembling for improved segmentation performance.

Fig. 6.14 shows the predictions obtained by averaging the predictions of two target
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Figure 6.11: Stochastic and deterministic translation of images from the Cityscapes target
dataset to the SYNTHIA source dataset.

networks Ft,σ2=1, Ft,σ2=10 and a one source network Fs. Averaging the predictions

allows us to further improve performance by better distinguishing similar structures

(e.g., road, sidewalk) and identifying small objects.

Qualitative comparison of the segmentation results.

Fig. 6.15 shows results segmentation results obtained by our method and DPL[7].

Our method generates better predictions that are closer to the ground-truth.
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Figure 6.12: Visualization of pseudolabels obtained from the first (R=0) and second (R=1)
round. Pseudolabels obtained in the second round are more accurate allowing
us to train more robust models in the last round of training.

Figure 6.13: Visualization of pseudolabels obtained by averaging the predictions of two
target networks Ft,σ2=1, Ft,σ2=10 and a one source network Fs. Averaging the
predictions allows us to generate more accurate pseudolabels.
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Figure 6.14: Visualization of results obtained by averaging the predictions of two target
networks Ft,σ2=1, Ft,σ2=10 and a one source network Fs. Averaging the pre-
dictions allows us to further improve performance by better distinguishing
similar structures (e.g., road, sidewalk) and identifying small objects.

Figure 6.15: Qualitative comparison of our method with DPL[7]. Our method generates
better predictions that are closer to the ground-truth.



Chapter 7

Conclusions

The main objective of the thesis was the development of methods that address the

scarcity of carefully annotated data required to train accurate deep learning models.

We focused on VERDICT MRI, an advanced imaging modality and we exploited

labeled DW-MRI data from mp-MRI to train deep learning models that generalize

well on VERDICT MRI. To this end, we proposed a semi-supervised and an unsu-

pervised domain adaptation approach for prostate lesion segmentation. We further

extended our approach for unsupervised domain adaptation in semantic segmenta-

tion of natural images. In Sec. 7.1 we provide a summary of our contributions and

in Sec. 7.2 we discuss future directions.

7.1 Summary of contributions

Model-free prostate lesion characterization on VERDICT MRI

In Chapter 3, we investigated the potential of model-free prostate lesion classifica-

tion on the raw VERDICT MRI data using FCNs. We also examined whether the

raw VERDICT MRI data allows for better classification of prostate lesions com-

pared to the raw DW data and the ADC map from the mp-MRI acquisition. Our

results indicate that i) FCNs trained on VERDICT MRI achieve good performance

in differentiating between malignant and benign lesions and ii) FCNs trained and

evaluated on VERDICT MRI perform better than FCNs trained and evaluated on

the raw DW data and the ADC from mp-MRI acquisitions.
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Semi-supervised domain adaptation for lesion segmentation

In Chapter 4, we proposed a semi-supervised domain adaptation approach for lesion

segmentation. Our approach relies on stochastic generative modelling to translate

across two heterogeneous domains at pixel-space and exploits the inherent uncer-

tainty in the cross-domain mapping to generate multiple outputs conditioned on a

single input. In addition, we enforce semantic consistency between the real and

synthetic images by exploiting both source-domain and target-domain lesion seg-

mentation supervision to train target-domain networks operating on the synthetic

images. This results in training networks that can generate diverse outputs while at

the same time preserving critical structures. We further accommodate the statistical

discrepancies between real and synthetic data by introducing residual adapters in the

segmentation network. These capture domain-specific properties and allow the seg-

mentation network to generalize better across the two domains. When compared to

its deterministic counterparts, our approach yields substantial improvements across

a broad range of dataset sizes, increasingly strong baselines, and evaluation metrics

without increasing computational complexity. Specifically, our method requires the

same computational resources as its deterministic counterparts during training. Dur-

ing test time only the segmentation network is used to provide the predictions for a

given test image.

Unsupervised domain adaptation for lesion segmentation

In Chapter 5, we proposed an unsupervised domain adaptation approach for le-

sion segmentation. As in Chapter 4, we rely on stochastic generative modelling to

translate across two heterogeneous domains at pixel-space and introduce two new

loss functions that promote semantic consistency. Firstly, we introduce a semantic

cycle-consistency loss in the source domain to ensure that the translation preserves

the semantics. Secondly, we introduce a pseudo-labelling loss, where we translate

target data to source, label them using a source-domain network, and use the gener-

ated pseudo-labels to supervise the target-domain network. When compared to sev-

eral unsupervised domain adaptation approaches, our approach yields substantial

improvements, that consistently carry over to the semi-supervised and supervised
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learning settings.

Unsupervised domain adaptation for segmentation of urban

scenes

In Chapter 6, we proposed an unsupervised domain adaptation approach for se-

mantic segmentation of urban scenes. As in Chapter 4, 5, we rely on stochastic

generative modelling to capture inherent translation ambiguities. This allows us to

(i) train more accurate target networks by generating multiple outputs conditioned

on the same source image, leveraging both accurate translation and data augmenta-

tion for appearance variability, (ii) impute robust pseudo-labels for the target data

by averaging the predictions of a source network on multiple translated versions

of a single target image and (iii) train and ensemble diverse networks in the target

domain by modulating the degree of stochasticity in the translations. We report im-

provements over strong recent baselines, leading to state-of-the-art UDA results on

two challenging semantic segmentation benchmarks.

7.2 Future work
Biopsy-based or prostatectomy-based ground-truth. In the present work, we

rely on labels corresponding to PI-RADS scores. However, it would be very

valuable from a clinical perspective to train and evaluate the performance of the

proposed approaches on biopsy-based or prostatectomy-based ground-truth. Cur-

rently, the clinical problem lies in accurately differentiating between clinically

significant and non-clinically significant prostate cancer in-vivo. Recent stud-

ies [92, 95, 133, 134, 135, 136, 94] focus on the development of deep learning

methods for discriminating between clinically significant and non-clinically sig-

nificant cancer on mp-MRI. In these studies biopsy-based or prostatectomy-based

annotations serve as ground truth and the results indicate that deep learning mod-

els can achieve high diagnostic accuracy. Future work should focus on obtaining

biopsy-based ground-truth for pairs of VERDICT MRI and DW data from mp-MRI

acquisitions. This would allow to examine more thoroughly whether FCNs trained

on VERDICT MRI can better discriminate between clinically significant and non-
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clinically significant cancer than models trained on standard DW data from mp-MRI

acquisitions. In addition, it would be interesting to evaluate the performance of the

proposed methods on both lesion segmentation and Gleason grading. Methods that

provide accurate Gleason grade classification could eliminate biopsies and play an

important role in clinical practice.

Using stochastic translation in other medical image analysis application.

Scarcity of high-quality annotated data and mismatch between the development

dataset and the target environment is a major challenge in machine learning for

medical imaging. To address this challenge, several domain adaptation methods

have been recently proposed. In addition, several datasets have become publicly

available, facilitating the evaluation of domain adaptation methods in different med-

ical image analysis applications. For instance, there are publicly available datasets

for cross-modality adaptation between MRI and CT images for cardiac substruc-

ture segmentation and abdominal multi-organ segmentation. In addition, a re-

cent cross-modality domain adaptation challenge (CrossModa) focuses on cross-

modality adaptation between contrast-enhanced T1 (ceT1) MRI and high-resolution

T2 (hrT2) MRI for segmenting brain structures. Future work could focus on extend-

ing and evaluating the methods proposed in this thesis using the aforementioned

publicly available medical imaging dataset.



Bibliography

[1] Donald F. Gleason. Histologic grading and clinical staging of prostate carci-

noma. Urologic pathology: the prostate, 171(98), 1977.

[2] Dwight G. Nishimura. Principles of magnetic resonance imaging. Stanford

Univ., Stanford, Calif., 1996.

[3] Bas Israël, Marloes van der Leest, Michiel Sedelaar, Anwar R. Padhani, Pa-

trik Zámecnik, and Jelle O. Barentsz. Multiparametric magnetic resonance

imaging for the detection of clinically significant prostate cancer: what urolo-

gists need to know. part 2: interpretation. European Urology, 77(4):469–480,

2020.

[4] Thais C. Mussi, Ronaldo H. Baroni, Ronald J. Zagoria, and Antonio C. West-

phalen. Prostate magnetic resonance imaging technique. Abdominal Radiol-

ogy, 45(7):2109–2119, 2020.

[5] Cher H. Tan, Jihong Wang, and Vikas Kundra. Diffusion weighted imaging

in prostate cancer. European Radiology, 21(3):593–603, 2011.

[6] Eleftheria Panagiotaki, Rachel W. Chan, Nikolaos Dikaios, Hashim U.

Ahmed, James O’Callaghan, Alex Freeman, David Atkinson, Shonit Pun-

wani, David J. Hawkes, and Daniel C. Alexander. Microstructural char-

acterization of normal and malignant human prostate tissue with vascular,

extracellular, and restricted diffusion for cytometry in tumours magnetic res-

onance imaging. Investigative Radiology, 50(4):218–227, 2015.



Bibliography 120

[7] Yiting Cheng, Fangyun Wei, Jianmin Bao, Dong Chen, Fang Wen, and Wen-

qiang Zhang. Dual path learning for domain adaptation of semantic seg-

mentation. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 9082–9091, 2021.

[8] Geert Litjens, Thijs Kooi, Babak E. Bejnordi, Arnaud A. A. Setio, Francesco

Ciompi, Mohsen Ghafoorian, Jeroen A. Van Der Laak, Bram Van Ginneken,

and Clara I. Sánchez. A survey on deep learning in medical image analysis.

Medical Image Analysis, 42:60–88, 2017.

[9] Dinggang Shen, Guorong Wu, and Heung-Il Suk. Deep learning in medical

image analysis. Annual Review of Biomedical Engineering, 19(1):221–248,

2017.

[10] Bjoern H. Menze, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-Cramer,

Keyvan Farahani, Justin Kirby, Yuliya Burren, Nicole Porz, Johannes Slot-

boom, Roland Wiest, et al. The multimodal brain tumor image segmentation

benchmark (BRATS). IEEE Transactions on Medical Imaging, 34(10):1993–

2024, 2014.

[11] Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter,

Helen M. Blau, and Sebastian Thrun. Dermatologist-level classification of

skin cancer with deep neural networks. Nature, 542(7639):115–118, 2017.

[12] Varun Gulshan, Lily Peng, Marc Coram, Martin C. Stumpe, Derek Wu,

Arunachalam Narayanaswamy, Subhashini Venugopalan, Kasumi Widner,

Tom Madams, Jorge Cuadros, Ramasamy Kim, Rajiv Raman, Philip C. Nel-

son, Jessica L. Mega, and Dale R. Webster. Development and validation of

a deep learning algorithm for detection of diabetic retinopathy in retinal fun-

dus photographs. The Journal of the American Medical Association, 316(22),

2016.

[13] Simon L.F. Walsh, Lucio Calandriello, Mario Silva, and Nicola Sverzellati.

Deep learning for classifying fibrotic lung disease on high-resolution com-



Bibliography 121

puted tomography: a case-cohort study. The Lancet Respiratory Medicine,

6(11):837–845, 2018.

[14] Jeffrey De Fauw, Joseph R. Ledsam, Bernardino Romera-Paredes, Stanislav

Nikolov, Nenad Tomasev, Sam Blackwell, Harry Askham, Xavier Glorot,

Brendan O’Donoghue, Daniel Visentin, et al. Clinically applicable deep

learning for diagnosis and referral in retinal disease. Nature Medicine,

24(9):1342–1350, 2018.

[15] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate

Saenko, Alexei Efros, and Trevor Darrell. Cycada: Cycle-consistent adver-

sarial domain adaptation. In International Conference on Machine Learning,

pages 1989–1998, 2018.

[16] Yunsheng Li, Lu Yuan, and Nuno Vasconcelos. Bidirectional learning for do-

main adaptation of semantic segmentation. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 6936–6945,

2019.

[17] Jue Jiang, Yu-Chi Hu, Neelam Tyagi, Pengpeng Zhang, Andreas Rimner,

Gig S. Mageras, Joseph O. Deasy, and Harini Veeraraghavan. Tumor-aware,

adversarial domain adaptation from CT to MRI for lung cancer segmenta-

tion. In Medical Image Computing and Computer Assisted Intervention–

MICCAI 2018: 21st International Conference, Granada, Spain, September

16-20, 2018, Proceedings, Part II 11, pages 777–785, 2018.

[18] Yue Zhang, Shun Miao, Tommaso Mansi, and Rui Liao. Task driven gen-

erative modeling for unsupervised domain adaptation: Application to X-

ray image segmentation. In Medical Image Computing and Computer As-

sisted Intervention–MICCAI 2018: 21st International Conference, Granada,

Spain, September 16-20, 2018, Proceedings, Part II, pages 599–607, 2018.

[19] Jinzheng Cai, Zizhao Zhang, Lei Cui, Yefeng Zheng, and Lin Yang. Towards

cross-modal organ translation and segmentation: A cycle and shape consis-



Bibliography 122

tent generative adversarial network. Medical Image Analysis, 52:174–184,

2019.

[20] Zizhao Zhang, Lin Yang, and Yefeng Zheng. Translating and segmenting

multimodal medical volumes with cycle and shape consistency generative

adversarial network. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 9242–9251, 2018.

[21] Eletheria Panagiotaki, Simon Walker-Samuel, Bernard Siow, Peter S. John-

son, Vineeth Rajkumar, Barbara R. Pedley, Mark F. Lythgoe, and Daniel C.

Alexander. Noninvasive quantification of solid tumor microstructure using

VERDICT MRI. Cancer Research, 74(7):1902–1912, 2014.

[22] Edward W. Johnston, Elisenda Bonet-Carne, Uran Ferizi, Ben Yvernault,

Hayley Pye, Dominic Patel, Joey Clemente, Wivijin Piga, Susan Heavey,

Harbir S. Sidhu, et al. VERDICT-MRI for prostate cancer: Intracellular vol-

ume fraction versus apparent diffusion coefficient. Radiology, 291(2):391–

397, 2019.

[23] Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing

for data: Ground truth from computer games. In Computer Vision–ECCV

2016: 14th European Conference, Amsterdam, The Netherlands, October

11-14, 2016, Proceedings, Part II 14, pages 102–118, 2016.

[24] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Anto-

nio M. Lopez. The SYNTHIA Dataset: A large collection of synthetic im-

ages for semantic segmentation of urban scenes. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 3234–3243,

June 2016.

[25] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus

Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele.

The cityscapes dataset for semantic urban scene understanding. In Proceed-



Bibliography 123

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion, pages 3213–3223, 2016.

[26] Eleni Chiou, Francesco Giganti, Elisenda Bonet-Carne, Shonit Punwani, Ia-

sonas Kokkinos, and Eleftheria Panagiotaki. Prostate cancer classification

on VERDICT DW-MRI using convolutional neural networks. In Machine

Learning in Medical Imaging: 9th International Workshop, MLMI 2018,

Held in Conjunction with MICCAI 2018, Granada, Spain, September 16,

2018, Proceedings 9, pages 319–327, 2018.

[27] Eleni Chiou, Francesco Giganti, Shonit Punwani, Iasonas Kokkinos, and

Eleftheria Panagiotaki. Automatic classification of benign and malignant

prostate lesions: A comparison using VERDICT DW-MRI and ADC maps.

In International Society for Magnetic Resonance in Medicine, 2019.

[28] Eleni Chiou, Francesco Giganti, Shonit Punwani, Iasonas Kokkinos, and

Eleftheria Panagiotaki. Harnessing uncertainty in domain adaptation for MRI

prostate lesion segmentation. In Medical Image Computing and Computer

Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima,

Peru, October 4–8, 2020, Proceedings, Part I 23, pages 510–520, 2020.

[29] Eleni Chiou, Francesco Giganti, Shonit Punwani, Iasonas Kokkinos, and

Eleftheria Panagiotaki. Domain adaptation for prostate lesion segmenta-

tion on VERDICT-MRI. In International Society for Magnetic Resonance

in Medicine, 2020.

[30] Eleni Chiou, Francesco Giganti, Shonit Punwani, Iasonas Kokkinos, and

Eleftheria Panagiotaki. Unsupervised domain adaptation with semantic con-

sistency across heterogeneous modalities for MRI prostate lesion segmen-

tation. In Domain Adaptation and Representation Transfer, and Afford-

able Healthcare and AI for Resource Diverse Global Health, pages 90–100.

Springer, 2021.



Bibliography 124

[31] Eleni Chiou, Francesco Giganti, Shonit Punwani, Iasonas Kokkinos, and

Eleftheria Panagiotaki. Prostate lesion segmentation on VERDICT-MRI

driven by unsupervised domain adaptation. In International Society for Mag-

netic Resonance in Medicine, 2020.

[32] Eleni Chiou, Eleftheria Panagiotaki, and Iasonas Kokkinos. Beyond deter-

ministic translation for unsupervised domain adaptation. In 33rd British Ma-

chine Vision Conference 2022, BMVC 2022, London, UK, November 21-24,

2022, 2022.

[33] Eleni Chiou, Vanya Valindria, Francesco Giganti, Shonit Punwani, Iasonas

Kokkinos, and Eleftheria Panagiotaki. Synthesizing verdict maps from stan-

dard DWI data using GANs. In International Workshop on Computational

Diffusion MRI, pages 58–67. Springer, 2021.

[34] Vanya Valindria, Marco Palombo, Eleni Chiou, Saurabh Singh, Shonit Pun-

wani, and Eleftheria Panagiotaki. Synthetic q-space learning with deep re-

gression networks for prostate cancer characterisation with VERDICT. In

2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI),

pages 50–54, 2021.

[35] Vanya Valindria, Saurabh Singh, Eleni Chiou, Thomy Mertzanidou, Baris

Kanber, Shonit Punwani, Marco Palombo, and Eleftheria Panagiotaki. Non-

invasive gleason score classification with VERDICT-MRI. In International

Society for Magnetic Resonance in Medicine, 2021.

[36] Marco Palombo, Vanya Valindria, Saurabh Singh, Eleni Chiou, Francesco

Giganti, Hayley Pye, Hayley C Whitaker, David Atkinson, Shonit Punwani,

Daniel C Alexander, et al. Joint estimation of relaxation and diffusion tis-

sue parameters for prostate cancer grading with relaxation-VERDICT MRI.

medRxiv, 2021.

[37] Hyuna Sung, Jacques Ferlay, Rebecca L. Siegel, Mathieu Laversanne, Is-

abelle Soerjomataram, Ahmedin Jemal, and Freddie Bray. Global cancer



Bibliography 125

statistics 2020: GLOBOCAN estimates of incidence and mortality world-

wide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians,

71(3):209–249, 2021.

[38] Klaus Eichler, Susanne Hempel, Jennifer Wilby, Lindsey Myers, Lucas M.

Bachmann, and Jos Kleijnen. Diagnostic value of systematic biopsy methods

in the investigation of prostate cancer: A systematic review. The Journal of

Urology, 175(5):1605–1612, 2006.

[39] Axel Heidenreich, Gunnar Aus, Michel Bolla, Steven Joniau, Vsevolod B.

Matveev, Hans Peter Schmid, and Filliberto Zattoni. EAU guidelines on

prostate cancer. European Urology, 53(1):68–80, 2008.

[40] Peter A. Humphrey. Gleason grading and prognostic factors in carcinoma of

the prostate. Modern pathology, 17(3):292–306, 2004.

[41] Hashim U Ahmed, Ahmed El-Shater Bosaily, Louise C Brown, Rhian Gabe,

Richard Kaplan, Mahesh K Parmar, Yolanda Collaco-Moraes, Katie Ward,

Richard G. Hindley, Alex Freeman, et al. Diagnostic accuracy of multi-

parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired

validating confirmatory study. The Lancet, 389(10071):815–822, 2017.

[42] Freddie C. Hamdy, Jenny L. Donovan, Jam Lane, Malcolm Mason, Chris

Metcalfe, Peter Holding, Michael Davis, Tim J. Peters, Emma L. Turner,

Richard M. Martin, et al. 10-year outcomes after monitoring, surgery, or

radiotherapy for localized prostate cancer. New England Journal of Medicine,

375(15):1415–1424, 2016.

[43] Masanori Noguchi, Thomas A. Stamey, John E. Mcneal, and Cheryl M.

Yemoto. Relationship between systematic biopsies and histological features

of 222 radical prostatectomy specimens: lack of prediction of tumor signif-

icance for men with nonpalpable prostate cancer. The Journal of Urology,

166(1):104–110, 2001.



Bibliography 126

[44] Philippe Puech, Olivier Rouvière, Raphaele Renard-Penna, Arnauld Villers,

Patrick Devos, Marc Colombel, Marc-Olivier Bitker, Xavier Leroy, Florence

Mège-Lechevallier, Eva Comperat, et al. Prostate cancer diagnosis: multi-

parametric mr-targeted biopsy with cognitive and transrectal us–mr fusion

guidance versus systematic biopsy—prospective multicenter study. Radiol-

ogy, 268(2):461–469, 2013.

[45] Pepijn Brocken, Judith B. Prins, Richard P.N. Dekhuijzen, and Henricus F.M.

van der Heijden. The faster the better?—A systematic review on distress in

the diagnostic phase of suspected cancer, and the influence of rapid diagnos-

tic pathways. Psycho-Oncology, 21(1):1–10, 2012.

[46] Arjun Sivaraman and Rafael Sanchez-Salas. Transperineal template-guided

mapping biopsy of the prostate. Technical Aspects of Focal Therapy in Lo-

calized Prostate Cancer, pages 101–114, 2015.

[47] A.V Taira, G.S. Merrick, R.W. Galbreath, H. Andreini, W. Taubenslag,

R. Curtis, W.M. Butler, E. Adamovich, and K.E. Wallner. Performance of

transperineal template-guided mapping biopsy in detecting prostate cancer

in the initial and repeat biopsy setting. Prostate cancer and prostatic dis-

eases, 13(1):71–77, 2010.

[48] Hashim Uddin Ahmed, Yipeng Hu, Tim Carter, Nimalan Arumainayagam,

Emilie Lecornet, Alex Freeman, David Hawkes, Dean C. Barratt, and Mark

Emberton. Characterizing clinically significant prostate cancer using tem-

plate prostate mapping biopsy. The Journal of Urology, 186(2):458–464,

2011.

[49] Gregory S. Merrick, Walter Taubenslag, Hugo Andreini, Sarah Brammer,

Wayne M. Butler, Edward Adamovich, Zachary Allen, Richard Anderson,

and Kent E. Wallner. The morbidity of transperineal template-guided prostate

mapping biopsy. BJU international, 101(12):1524–1529, 2008.



Bibliography 127

[50] Marc A. Bjurlin, Peter R. Carroll, Scott Eggener, Pat F. Fulgham, Daniel J.

Margolis, Peter A. Pinto, Andrew B. Rosenkrantz, Jonathan N. Rubenstein,

Daniel B. Rukstalis, Samir S. Taneja, et al. Update of the standard operat-

ing procedure on the use of multiparametric magnetic resonance imaging for

the diagnosis, staging and management of prostate cancer. The Journal of

Urology, 203(4):706–712, 2020.

[51] Stacy Loeb, Annelies Vellekoop, Hashim U. Ahmed, James Catto, Mark Em-

berton, Robert Nam, Derek J. Rosario, Vincenzo Scattoni, and Yair Lotan.

Systematic review of complications of prostate biopsy. European Urology,

64(6):876–892, 2013.

[52] Veeru Kasivisvanathan, Antti S. Rannikko, Marcelo Borghi, Valeria

Panebianco, Lance A. Mynderse, Markku H. Vaarala, Alberto Briganti, Lars

Budäus, Giles Hellawell, Richard G. Hindley, et al. MRI-targeted or stan-

dard biopsy for prostate-cancer diagnosis. New England Journal of Medicine,

378(19):1767–1777, 2018.

[53] Jeffrey C. Weinreb, Jelle O. Barentsz, Peter L. Choyke, Francois Cornud,

Masoom A. Haider, Katarzyna J. Macura, Daniel Margolis, Mitchell D.

Schnall, Faina Shtern, Clare M. Tempany, Harriet C. Thoeny, and Sadna

Verma. PI-RADS prostate imaging – reporting and data system: 2015, ver-

sion 2. European Urology, 69(1):16 – 40, 2016.

[54] C. M. A. Hoeks, J. O. Barentsz, T. Hambrock, D. Yakar, D. M. Somford,

S. W. T. P. J. Heijmink, T. W. J. Scheenen, P. C. Vos, H. Huisman, I. M.

Oort, J. A. Witjes, A. Heerschap, and J. J. Fütterer. Prostate cancer: Multi-

parametric MR imaging for detection, localization, and staging. Radiology,

261(1):46–66, 2011.

[55] H. Hricak, R.D. Williams, D.B. Spring, K.L. Moon, M.W. Hedgcock, R.A.

Watson, and L.E. Crooks. Anatomy and pathology of the male pelvis by mag-



Bibliography 128

netic resonance imaging. American Journal of Roentgenology, 141(6):1101–

1110, 1983.

[56] Hedrig Hricak, Georges C. Dooms, John E. McNeal, Alexander S. Mark,

Miljenko Marotti, Antony Avallone, Mark Pelzer, Evelyn C. Proctor, and

Emil A. Tanagho. MR imaging of the prostate gland: normal anatomy. Amer-

ican Journal of Roentgenology, 148(1):51–58, 1987.

[57] John E. McNeal. The zonal anatomy of the prostate. The prostate, 2(1):35–

49, 1981.

[58] Oguz Akin, Evis Sala, Chaya S. Moskowitz, Kentaro Kuroiwa, Nicole M.

Ishill, Darko Pucar, Peter T. Scardino, and Hedvig Hricak. Transition zone

prostate cancers: features, detection, localization, and staging at endorectal

mr imaging. Radiology, 239(3):784–792, 2006.

[59] C. H. Tan, W. Wei, V. Johnson, and V. Kundra. Diffusion-weighted MRI

in the detection of prostate cancer: Meta-analysis. American Journal of

Roentgenology, 199(4):822–829, 2012.

[60] R. T. Gupta, B. Spilseth, N. Patel, A. F. Brown, and J. Yu. Multiparametric

prostate MRI: focus on T2-weighted imaging and role in staging of prostate

cancer. Abdominal Radiology, 41(5):831–843, 2016.

[61] Jelle O. Barentsz, Jonathan Richenberg, Richard Clements, Peter Choyke,

Sadhna Verma, Geert Villeirs, Olivier Rouviere, Vibeke Logager, and Jur-

gen J. Fütterer. ESUR prostate MR guidelines 2012. European Radiology,

22(4):746–757, 2012.

[62] S. Verma, B. Turkbey, N. Muradyan, A. Rajesh, F. Cornud, M. A. Haider,

P. L. Choyke, and M. Harisinghani. Overview of dynamic contrast-enhanced

MRI in prostate cancer diagnosis and management. American Journal of

Roentgenology, 198(6):1277–1288, 2012.



Bibliography 129

[63] C. H. Tan, B. P. Hobbs, W. Wei, and V. Kundra. Dynamic contrast-enhanced

MRI for the detection of prostate cancer: Meta-analysis. American Journal

of Roentgenology, 204(4):439–448, 2015.

[64] Peter Carmeliet and Rakesh K. Jain. Angiogenesis in cancer and other dis-

eases. Nature, 407(6801):249–257, 2000.

[65] P.S. Tofts, D.A.G. Wicks, and G. Barker. The MRI measurement of NMR and

physiological parameters in tissue to study disease process. In Information

Processing in Medical Imaging, pages 313–326. Wiley-Liss Inc, USA, 1991.

[66] Gunnar Brix, Wolfhard Semmler, Rüdiger Port, Lothar R. Schad, Günter

Layer, and Walter J. Lorenz. Pharmacokinetic parameters in CNS Gd-

DTPA enhanced MR imaging. Journal of Computer Assisted Tomography,

15(4):621–628, 1991.

[67] Sofie Isebaert, Laura Van den Bergh, Karin Haustermans, Steven Joniau,

Evelyne Lerut, Liesbeth De Wever, Frederik De Keyzer, Tom Budiharto,

Pieter Slagmolen, Hendrik Van Poppel, et al. Multiparametric MRI for

prostate cancer localization in correlation to whole-mount histopathology.

Journal of Magnetic Resonance Imaging, 37(6):1392–1401, 2013.

[68] Gregory J. Metzger, Chaitanya Kalavagunta, Benjamin Spilseth, Patrick J.

Bolan, Xiufeng Li, Diane Hutter, Jung W. Nam, Andrew D. Johnson,

Jonathan C. Henriksen, Laura Moench, et al. Detection of prostate cancer:

quantitative multiparametric mr imaging models developed using registered

correlative histopathology. Radiology, 279(3):805–816, 2016.

[69] Roger Bourne and Eleftheria Panagiotaki. Limitations and prospects for

diffusion-weighted MRI of the prostate. Diagnostics, 6(2):21, 2016.

[70] Dow-Mu Koh and David J. Collins. Diffusion-weighted MRI in the body: ap-

plications and challenges in oncology. American Journal of Roentgenology,

188(6):1622–1635, 2007.



Bibliography 130

[71] Denis Le Bihan. Looking into the functional architecture of the brain with

diffusion MRI. Nature Reviews Neuroscience, 4(6):469–480, 2003.

[72] Chan Kyo Kim, Byung Kwan Park, and Bohyun Kim. Diffusion-weighted

MRI at 3 T for the evaluation of prostate cancer. American Journal of

Roentgenology, 194(6):1461–1469, 2010.

[73] G. Lematre, R. Marta, J. Freixenet, J. C. Vilanova, P. M. Walker, and F. Meri-

audeau. Computer-aided detection and diagnosis for prostate cancer based

on mono and multi-parametric MRI: A review. Computers in Biology and

Medicine, 60:8–31, 2015.

[74] G. J. S. Litjens, J. O. Barentsz, N. Karssemeijer, and H. J. Huisman. Au-

tomated computer-aided detection of prostate cancer in MR images: from a

whole-organ to a zone-based approach. Proceedings of SPIE–the Interna-

tional Society for Optical Engineering, 8315, 2012.

[75] S. Klein, U. A. van der Heide, I. M. Lips, M Vulpen, M. Staring, and J. P. W.

Pluim. Automatic segmentation of the prostate in 3D MR images by atlas

matching using localized mutual information. Medical Physics, 35(4):1407–

1417, 2008.

[76] G. Litjens, O. Debats, J. Barentsz, N. Karssemeijer, and H. Huisman.

Computer-aided detection of prostate cancer in MRI. IEEE Transactions

on Medical Imaging, 33(5):1083–1092, 2014.

[77] R. Langerak, U. A. van der Heide, A. N. T. J. Kotte, M. A. Viergever, M. van

Vulpen, and J. P. W. Pluim. Label fusion in atlas-based segmentation using

a selective and iterative method for performance level estimation (SIMPLE).

IEEE Transactions on Medical Imaging, 29:2000–2008, 2010.

[78] S. E. Viswanath, B. N. Bloch, M. Rosen, J. Chappelow, N. M. Rofsky, R. E.

Lenkinski, E. M. Genega, A. Kalyanpur, and A. Madabhushi. Integrating

structural and functional imaging for computer assisted detection of prostate



Bibliography 131

cancer on multi-protocol in vivo 3 Tesla MRI. In Proceedings of SPIE–the

International Society for Optical Engineering, volume 7260, 2009.

[79] R. Toth, J. Chappelow, M. Rosen, S. Pungavkar, A. Kalyanpur, and A. Mad-

abhushi. Multi-attribute non-initializing texture reconstruction based active

shape model (MANTRA). In Medical Image Computing and Computer-

Assisted Intervention, pages 653–661. Springer Berlin Heidelberg, 2008.

[80] I. Reda, A. Shalaby, M. Elmogy, A. Aboulfotouh, F. Khalifa, M. A. El-Ghar,

G. Gimelfarb, and A. El-Baz. Image-based computer-aided diagnostic sys-

tem for early diagnosis of prostate cancer. In Medical Image Computing

and Computer-Assisted Intervention, pages 610–618, Cham, 2016. Springer

International Publishing.

[81] I. Reda, A. Shalaby, M. Elmogy, A. A. Elfotouh, F. Khalifa, M. A. El-Ghar,

E. Hosseini-Asl, G. Gimel’farb, N. Werghi, and A. El-Baz. A comprehen-

sive non-invasive framework for diagnosing prostate cancer. Computers in

Biology and Medicine, 81:148–158, 2017.

[82] I. Reda, A. Shalaby, M. A. El-Ghar, F. Khalifa, M. Elmogy, A. Aboulfo-

touh, E. Hosseini-Asl, A. El-Baz, and R. Keynton. A new NMF-autoencoder

based CAD system for early diagnosis of prostate cancer. In International

Symposium on Biomedical Imaging, pages 1237–1240, 2016.

[83] V. Giannini, A. Vignati, S. Mazzetti, M. De Luca, C. Bracco, M. Stasi,

F. Russo, E. Armando, and D. Regge. A prostate CAD system based on

multiparametric analysis of DCE T1-w, and DW automatically registered

images. In Proceedings of SPIE–the International Society for Optical Engi-

neering, volume 8670, 2013.

[84] A. P. Kiraly, C. A. Nader, A. Tuysuzoglu, R. Grimm, B. Kiefer, N. El-Zehiry,

and A. Kamen. Deep convolutional encoder-decoders for prostate cancer

detection and classification. In Medical Image Computing and Computer-



Bibliography 132

Assisted Intervention, pages 489–497, Cham, 2017. Springer International

Publishing.

[85] W. M. Wells, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis. Multi-modal

volume registration by maximization of mutual information. Medical Image

Analysis, 1(1):35– 51, 1996.

[86] X. Yang, Z. Wang, C. Liu, H. M. Le, J. Chen, K.-T. Cheng, and L. Wang.

Joint detection and diagnosis of prostate cancer in multi-parametric MRI

based on multimodal convolutional neural networks. In Medical Image Com-

puting and Computer-Assisted Intervention, pages 426–434, Cham, 2017.

Springer International Publishing.

[87] Y. Artan, M. A. Haider, D. L. Langer, T. H. van der Kwast, A. J. Evans,

Y. Yang, M. N. Wernick, J. Trachtenberg, and I. S. Yetik. Prostate cancer

localization with multispectral MRI using cost-sensitive support vector ma-

chines and conditional random fields. IEEE Transactions on Image Process-

ing, 19(9):2444–2455, 2010.

[88] E. Niaf, O. Rouvière, F. Bratan F Mège-Lechevallier, and C. Lartizien.

Computer-aided diagnosis of prostate cancer in the peripheral zone using

multiparametric MRI. Physics in Medicine & Biology, 57(12):2444–2455,

2012.

[89] A. Mehrtash, A. Sedghi, M. Ghafoorian, M. Taghipour, C. M. Tempany,

W. M. Wells, T. Kapur, P. Mousavi, P. Abolmaesumi, and A. Fedorova. Clas-

sification of clinical significance of MRI prostate findings using 3D convo-

lutional neural networks. Proceedings of SPIE–the International Society for

Optical Engineerings, 10134, 2017.

[90] Y. K. Tsehay, N. S. Lay, H. R. Roth, X. Wang, J. T. Kwak, B. I. Turkbey, P. A.

Pinto, and R. M. Summers B. J. Wood. Convolutional neural network based

deep-learning architecture for prostate cancer detection on multiparametric



Bibliography 133

magnetic resonance images. Proceedings of SPIE–the International Society

for Optical Engineerings, 10134, 2017.

[91] S. Xie and Z. Tu. Holistically-nested edge detection. In Proceedings of

the IEEE International Conference on Computer Vision, pages 1395–1403,

2015.

[92] Z. Wang, C. Liu, D. Cheng, L. Wang, X. Yang, and K. T. Cheng. Automated

detection of clinically significant prostate cancer in mp-MRI images based on

an end-to-end deep neural network. IEEE Transactions on Medical Imaging,

37(5):1127–1139, 2018.

[93] G. Litjens, O. Debats, J. Barentsz, N. Karssemeijer, and H. Huisman.

Computer-aided detection of prostate cancer in MRI. IEEE Transactions

on Medical Imaging, 33(5):1083–1092, 2014.

[94] Ruiming Cao, Amirhossein Mohammadian Bajgiran, Sohrab Afshari Mi-

rak, Sepideh Shakeri, Xinran Zhong, Dieter Enzmann, Steven Raman, and

Kyunghyun Sung. Joint prostate cancer detection and gleason score pre-

diction in mp-MRI via focalnet. IEEE Transactions on Medical Imaging,

38(11):2496–2506, 2019.

[95] Pritesh Mehta, Michela Antonelli, Saurabh Singh, Natalia Grondecka, Ed-

ward W. Johnston, Hashim U. Ahmed, Mark Emberton, Shonit Punwani,

and Sébastien Ourselin. Autoprostate: Towards automated reporting of

prostate MRI for prostate cancer assessment using deep learning. Cancers,

13(23):6138, 2021.

[96] Lucy A.M. Simmons, Abi Kanthabalan, Manit Arya, Tim Briggs, Dean

Barratt, Susan C. Charman, Alex Freeman, James Gelister, David Hawkes,

Yipeng Hu, et al. The picture study: diagnostic accuracy of multiparametric

mri in men requiring a repeat prostate biopsy. British Journal of Cancer,

116(9):1159–1165, 2017.



Bibliography 134

[97] Praful Hambarde, Sanjay Talbar, Abhishek Mahajan, Satishkumar Chavan,

Meenakshi Thakur, and Nilesh Sable. Prostate lesion segmentation in MR

images using radiomics based deeply supervised U-Net. Biocybernetics and

Biomedical Engineering, 40(4):1421–1435, 2020.

[98] Yizheng Chen, Lei Xing, Lequan Yu, Hilary P. Bagshaw, Mark K. Buyy-

ounouski, and Bin Han. Automatic intraprostatic lesion segmentation in

multiparametric magnetic resonance images with proposed multiple branch

UNet. Medical Physics, 47(12):6421–6429, 2020.

[99] Yatong Liu, Yu Zhu, Wei Wang, Bingbing Zheng, Xiangxiang Qin, and Pei-

jun Wang. Multi-scale discriminative network for prostate cancer lesion seg-

mentation in multiparametric mr images. Medical Physics, 2022.

[100] Audrey Duran, Gaspard Dussert, Olivier Rouvière, Tristan Jaouen, Pierre-

Marc Jodoin, and Carole Lartizien. Prostattention-net: A deep attention

model for prostate cancer segmentation by aggressiveness in MRI scans.

Medical Image Analysis, 77:102347, 2022.

[101] Shirin Sabouri, Silvia D. Chang, Richard Savdie, Jing Zhang, Edward C.

Jones, S. Larry Goldenberg, Peter C. Black, and Piotr Kozlowski. Luminal

water imaging: a new MR imaging T2 mapping technique for prostate cancer

diagnosis. Radiology, 284(2):451–459, 2017.

[102] Shirin Sabouri, Ladan Fazli, Silvia D. Chang, Richard Savdie, Edward C.

Jones, S. Larry Goldenberg, Peter C. Black, and Piotr Kozlowski. MR

measurement of luminal water in prostate gland: Quantitative correlation

between MRI and histology. Journal of Magnetic Resonance Imaging,

46(3):861–869, 2017.

[103] Aritrick Chatterjee, Carla Harmath, and Aytekin Oto. New prostate MRI

techniques and sequences. Abdominal Radiology, 45(12):4052–4062, 2020.

[104] Shiyang Wang, Yahui Peng, Milica Medved, Ambereen N. Yousuf, Marko K.

Ivancevic, Ibrahim Karademir, Yulei Jiang, Tatjana Antic, Steffen Sammet,



Bibliography 135

Aytekin Oto, et al. Hybrid multidimensional T2 and diffusion-weighted

MRI for prostate cancer detection. Journal of Magnetic Resonance Imag-

ing, 39(4):781–788, 2014.

[105] Aritrick Chatterjee, Roger M. Bourne, Shiyang Wang, Ajit Devaraj, Alexan-

der J. Gallan, Tatjana Antic, Gregory S. Karczmar, and Aytekin Oto. Diag-

nosis of prostate cancer with noninvasive estimation of prostate tissue com-

position by using hybrid multidimensional MR imaging: a feasibility study.

Radiology, 287(3):864–873, 2018.

[106] Nathan S. White, Carrie R. McDonald, Niky Farid, Josh Kuperman, David

Karow, Natalie M. Schenker-Ahmed, Hauke Bartsch, Rebecca Rakow-

Penner, Dominic Holland, Ahmed Shabaik, et al. Diffusion-weighted imag-

ing in cancer: physical foundations and applications of restriction spectrum

imaging. Cancer research, 74(17):4638–4652, 2014.

[107] Nathan S. White, Trygve B. Leergaard, Helen D’Arceuil, Jan G. Bjaalie,

and Anders M. Dale. Probing tissue microstructure with restriction spectrum

imaging: histological and theoretical validation. Human Brain Mapping,

34(2):327–346, 2013.

[108] Ileana O. Jelescu, Marco Palombo, Francesca Bagnato, and Kurt G.

Schilling. Challenges for biophysical modeling of microstructure. Journal

of Neuroscience Methods, 344:108861, 2020.

[109] Hassan Bagher-Ebadian, Kourosh Jafari-Khouzani, Panayiotis D. Mitsias,

Mei Lu, Hamid Soltanian-Zadeh, Michael Chopp, and James R. Ewing. Pre-

dicting final extent of ischemic infarction using artificial neural network anal-

ysis of multi-parametric MRI in patients with stroke. PloS one, 6(8):e22626,

2011.

[110] Vladimir Golkov, Tim Sprenger, Jonathan Sperl, Marion Menzel, Michael

Czisch, Philipp Samann, and Daniel Cremers. Model-free novelty-based dif-



Bibliography 136

fusion MRI. In 2016 IEEE 13th International Symposium on Biomedical

Imaging (ISBI), pages 1233–1236. IEEE, 2016.

[111] Vladimir Golkov, Alexey Dosovitskiy, Jonathan I. Sperl, Marion I. Men-

zel, Michael Czisch, Philipp Sämann, Thomas Brox, and Daniel Cremers.

q-space deep learning: Twelve-fold shorter and model-free diffusion MRI

scans. IEEE Transactions on Medical Imaging, 35(5):1344–1351, 2016.

[112] Vladimir Golkov, Alexey Dosovitskiy, Philipp Sämann, Jonathan I. Sperl,

Tim Sprenger, Michael Czisch, Marion I. Menzel, Pedro A. Gómez, Axel

Haase, Thomas Brox, and Daniel Cremers. q-space deep learning for twelve-

fold shorter and model-free diffusion MRI scans. In Medical Image Com-

puting and Computer-Assisted Intervention – MICCAI 2015, pages 37–44,

Cham, 2015. Springer International Publishing.

[113] Davood Karimi, Lana Vasung, Camilo Jaimes, Fedel Machado-Rivas, Si-

mon K. Warfield, and Ali Gholipour. Learning to estimate the fiber ori-

entation distribution function from diffusion-weighted MRI. Neuroimage,

239:118316, 2021.

[114] Eric K. Gibbons, Kyler K. Hodgson, Akshay S. Chaudhari, Lorie G.

Richards, Jennifer J. Majersik, Ganesh Adluru, and Edward V.R. DiBella.

Simultaneous NODDI and GFA parameter map generation from subsam-

pled q-space imaging using deep learning. Magnetic Resonance in Medicine,

81(4):2399–2411, 2019.

[115] Eric Aliotta, Hamidreza Nourzadeh, Jason Sanders, Donald Muller, and

Daniel B. Ennis. Highly accelerated, model-free diffusion tensor MRI recon-

struction using neural networks. Medical Physics, 46(4):1581–1591, 2019.

[116] E. Johnston, H. Pye, E. Bonet-Carne, E. Panagiotaki, D. Patel, M. Galazi,

S. Heavey, L. Carmona, A. Freeman, G. Trevisan, C. Allen, A. Kirkham,

K. Burling, N. Stevens, D. Hawkes, M. Emberton, C. Moore, H. U. Ahmed,

D. Atkinson, M. Rodriguez-Justo, T. Ng, D. Alexander, H. Whitaker, and



Bibliography 137

S. Punwani. INNOVATE: A prospective cohort study combining serum and

urinary biomarkers with novel diffusion-weighted magnetic resonance imag-

ing for the prediction and characterization of prostate cancer. BMC Cancer,

16(816), 2016.

[117] Eleftheria Panagiotaki, Andrada Ianus, Edward Johnston, R. Chan, David

Atkinson, D. Alexander, et al. Optimised VERDICT MRI protocol for

prostate cancer characterisation. In International Society for Magnetic Reso-

nance in Medicine, 2015.

[118] Sébastien Ourselin, Alexis Roche, Gérard Subsol, Xavier Pennec, and

Nicholas Ayache. Reconstructing a 3D structure from serial histological sec-

tions. Image and Vision Computing, 19(1-2):25–31, 2001.

[119] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional

networks for semantic segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3431–3440, 2015.

[120] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional

networks for biomedical image segmentation. In Medical Image Comput-

ing and Computer-Assisted Intervention–MICCAI 2015: 18th International

Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18,

pages 234–241, 2015.

[121] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep

convolutional encoder-decoder architecture for image segmentation. IEEE

transactions on Pattern Analysis and Machine Intelligence, 39(12):2481–

2495, 2017.

[122] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and

Hartwig Adam. Encoder-decoder with atrous separable convolution for se-

mantic image segmentation. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 801–818, 2018.



Bibliography 138

[123] K. He and et al. Deep residual learning for image recognition. In CVPR,

2016.

[124] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural net-

works. arXiv preprint arXiv:1511.08458, 2015.

[125] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In International Con-

ference on Machine Learning, pages 448–456, 2015.

[126] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted

boltzmann machines. In Proceedings of the International Conference on Ma-

chine Learning, pages 807–814, 2010.

[127] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classi-

fication with deep convolutional neural networks. Communications of the

ACM, 60(6):84–90, 2017.

[128] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. In International Conference on Learning

Representations, 2015.

[129] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks

from overfitting. The Journal of Machine Learning Research, 15(1):1929–

1958, 2014.

[130] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward

Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and

Adam Lerer. Automatic differentiation in pytorch. In NIPS 2017 Workshop

Autodiff Decision, 2017.
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